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ABSTRACT 

The Least Privilege Separation Kernel (LPSK) is part of the Trusted Computing 

Exemplar (TCX) project. Separation kernels may be used to partition resources in support 

of the enforcement of mandatory security policies. The LPSK provides services that 

allow each subject to access resources configured as part of its domain. To ensure 

permanence of information the LPSK requires a storage hierarchy for its data resources. 

This thesis describes the design for a LPSK storage hierarchy based on existing 

LPSK requirements. The design was implemented in a Linux environment to produce a 

storage hierarchy prototype. Implementation of the prototype proceeded in keeping with 

principles for developmental security which include minimization, modularity, and 

hierarchical dependencies. The LPSK storage hierarchy external interfaces belong in 

three distinct categories: The configuration interfaces are used to construct the storage 

hierarchy and its contents in a non-LPSK context, initialization interfaces associate data 

segment handles with data segments that are exported to LPSK subjects, and runtime 

interfaces support the reading and writing to secondary storage data segments exported to 

non-LPSK subjects. Testing showed that storage hierarchy interfaces behaved according 

to specification. This study shows that a storage hierarchy prototype can be designed and 

implemented based on the LPSK functional specification. 
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I. INTRODUCTION  

A. MOTIVATION 

The size and complexity of modern computing systems, and governmental and 

private organization’s reliance on these systems to process sensitive information, has 

increased the attention paid to the threat of system exploitation and unintended 

information flow. Users rely on system security mechanisms to enforce policies regarding 

the flow of information between various system components. A system’s security policy 

however is not always equivalent to the actual security policy enforced by the system. 

The certainty of a system’s ability to enforce a security policy can only be measured by 

the analysis of policy-enforcing mechanisms. A high level of certainty, or assurance, that 

a system will behave as configured increases confidence in that system’s ability to 

correctly process sensitive information.  

The goal of the Trusted Computing Exemplar (TCX) project is to develop an 

example of a high assurance computing platform. The core operating system, or kernel, 

of the TCX computing platform will provide a high level of assurance that only explicitly 

defined information flow can occur between entities hosted on the platform.  The Least 

Privilege Separation Kernel (LPSK) contains the mechanisms for separating system 

subjects and resources into partitions, as if they were located in distributed systems, and 

controlling the flow of information between these partitions. This information flow policy 

is part of the configuration of an LPSK system.  

Operating systems need file systems to store data over long periods of time. So 

does the LPSK. The LPSK provides long-term persistence of information for its hosted 

subjects through the LPSK storage hierarchy. The motivation of this thesis is to develop a 

storage hierarchy prototype that meets the requirements of the TCX project and the 

functional requirements of the LPSK. The storage hierarchy prototype is an LPSK 

module that facilitates the secondary storage of data segments in a tree-like structure. 
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While similar to conventional file systems in many ways, the storage hierarchy differs 

from these systems in that it is designed to intentionally avoid the potential of 

information flow through a resource exhaustion covert channel.  

B. PURPOSE OF STUDY 

The objective of this research was to analyze the LPSK storage hierarchy 

requirements, map these requirements to a storage hierarchy design, and then implement 

this design as a prototype LPSK module. An interface specification document was 

authored to define the boundary between the storage hierarchy module and the LPSK and 

LPSK configuration tools.  The module was tested to ensure it behaved according to the 

interface specification. This study contributes original work to the TCX project and 

furthers its goals of developing an openly available example of a high assurance 

computing platform.  

C. THESIS ORGANIZATION 

This thesis is organized as a series of chapters. Chapter I describes the motivation 

and purpose of this thesis. Chapter II provides background information on the TCX 

project, separation kernels and the LPSK, file system organization, and the LPSK storage 

hierarchy. Chapter III contains the storage hierarchy requirements, interface and data 

structure designs, and implementation details. This chapter makes the distinction between 

three types of storage hierarchy external interfaces. Chapter IV documents storage 

hierarchy external interface test results. Functional testing was performed on all 

interfaces in conjunction with negative testing for error cases. Chapter V concludes this 

work with a discussion of the study’s results, lessons learned, and suggestions for future 

work. 
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II. BACKGROUND 

This chapter serves to provide the reader with basic understanding of the Least 

Privilege Separation Kernel of the Trusted Computing Exemplar project and the LPSK 

Storage Hierarchy specifically. The concepts of trusted computing and separation kernels 

are introduced in the first section. The second section introduces the Storage Hierarchy as 

an analog of file systems and discusses file system concepts as they relate to the LPSK 

storage hierarchy.  

A. TRUSTED COMPUTING EXEMPLAR PROJECT 

Public demand for computer software technology, and the rapid development of 

technology to satisfy this demand, has resulted in insufficient consideration given to the 

trustworthiness of systems intended to protect both code and data. There are no recent 

openly available examples of highly trustworthy software products that show how such 

systems are built [1]. The purpose of the TCX project is to address this lack of trusted 

computing technology by developing open and documented examples of software 

systems that can be verified and proven to provide high assurance. High assurance is 

achieved by showing that systems operate correctly and according to specification.  

Output of the TCX project will satisfy the demand for knowledge in the area of trusted 

computing.  The four main activities of the TCX project follow are: 

• Creation of a prototype framework for rapid high assurance system 

development; 

• Development of a reference-implementation trusted computing component; 

• Evaluation of the component for high assurance; and 

• Open dissemination of deliverables related to the first three activities [1]. 

The following three sections discuss trusted computing, separation kernels, and the TCX 

Least Privilege Separation Kernel. 
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1. Trusted Computing  

Trusted Computing is an approach to computer architecture and software 

development and evaluation that considers both the risks of system penetration by frontal 

attack and system subversion. The methods employed to show that both categories of risk 

are properly addressed will also show that the system in question operates correctly and 

can thus be trusted. 

Frontal attacks are those that exploit behaviors in a system that were inadvertently 

included by its developers. Frontal attacks rely on the exploitation of either documented 

or undocumented flaws in a system. Subversion is the purposeful placement of an 

artifice, or trap door, into a system during design or implementation that circumvents 

normal system controls when instructed to do so by specific stimulus [2].  Subversion can 

occur at any time during a system’s life cycle and can be designed to completely bypass 

all system controls meant to protect the system’s integrity. Ensuring that either case of 

attack is not possible requires a system to be implemented with no exploitable flaws and 

without subversive artifices.  

Modern computer systems are often comprised of hundreds of thousands, or even 

tens of millions, of lines of code. It is infeasible to analyze such large and complex 

systems by source code inspection or security test and evaluation to determine a lack of 

exploitable flaws and malicious artifices [3][4]. Furthermore, subversion of a system can 

occur in its earliest development phases, confounding future attempts at detection. 

Trusted Computing methodologies are intended to prevent subversion by requiring exact 

and unambiguous specification of all system databases and functions from the very first 

design phases of the system. When combined with rigorous configuration management, 

this increases confidence in the integrity of the system from inception through retirement. 

Formal methods are used to show that the security policy of the system enforced 

by its security mechanisms is mathematically correct. A system’s security policy 

represents all permissible interactions between subjects or processes and data. Since these 

permissible interactions are potential targets of subversion, the security mechanisms that 

enforce the security policy of the system must be verifiable against some standard 
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criterion to show they work correctly. The Common Criteria (CC) supports the creation 

of a common set of requirements and evaluation techniques to express some measure of 

confidence in this verification of security mechanisms [5]. 

The CC was developed by several cooperating countries to provide a recognized 

standard for providing security guidance to vendors, and a framework to evaluate system 

controls and security mechanisms [5]. A protection profile is developed to require a 

particular level of assurance, with higher evaluation assurance levels (EALs) requiring 

more stringent and exacting requirements. For instance, successful EAL1 validation 

provides confidence a system will operate correctly where security threats are of little 

concern, while EAL7 validation provides confidence that the security policies will be 

correctly enforced even in the face of major threats. A system that is evaluated at EAL7 

will have been developed with both frontal attacks and subversion risks fully considered 

and guarded against.  

Trusted Computing attempts to prevent successful frontal attack and system 

subversions by addressing the origination of these risks in planning and implementation. 

By formally modeling and proving the correctness of a system’s design, and validating its 

implementation against a set of standards such as the CC, the trustworthiness of a system 

can be established. 

2. Separation Kernels 

The kernel is the core of an operating system and has direct and complete control 

over all of the systems resources, including the operating system, and user applications 

and data. The interaction of applications and users by way of data flow in the system is 

mediated by controls in the kernel. Without assurance provided for the correctness of 

these kernel controls, no assertions can be made about the interactions and data flows 

they are meant to control.  

Security kernels attempt to provide assurance by consolidating their basic controls 

and security mechanisms into a minimal, verifiably correct core, or kernel. The 

interactions and data flows of the system are then mediated from this trusted core, which 

becomes the enforcer of a system-wide security policy [6][7]. This approach is 
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complicated with the introduction of “trusted processes” to the system [8]. These 

processes are less constrained by the mechanisms of the security kernel in order to carry 

out necessary tasks that are otherwise forbidden by the system’s security policy: for 

example, re-grading the classification level of information in a multilevel system. The 

verification of a system that uses trusted processes must now extend outside the security 

kernel to those processes, contrary to the original intent of these kernels [8].  

In 1981, Rushby suggested a new class of security kernels called separation 

kernels [8]. He observes that no data flow can occur in a physically separated system of 

individual computers by virtue of their disconnectedness. The data flow policy of the 

overall system is determined by how the individual computers are physically connected 

by communication channels. Individual computers in the distributed system may not 

influence the operation of other computers unless communication is authorized by the 

data flow policy. A separation kernel emulates the properties of this distributed system in 

one physical system by creating multiple, virtual execution environments, and enforcing 

a data flow policy between them [8].  

Separation kernels separate the resources of a system (such as subjects and data) 

into partitions. Subjects in one partition may not interact with data in another partition 

unless this interaction has been explicitly allowed by the data flow policy enforced by the 

separation kernel. The data flow policy of the system is defined by the configuration of 

the partitions, their contents, and the communication channels between them.  

The Information Assurance Directorate of the United States Government 

published “The U.S. Government Protection Profile for Separation Kernels in 

Environments Requiring High Robustness.” This document defines the Separation Kernel 

Protection Profile (SKPP); the requirements for a high assurance separation kernel [9]. 

The TCX LPSK is being built to comply with the SKPP, and is targeted for evaluation at 

EAL7. 

Figure 1 illustrates a simple separation kernel configuration which contains three 

partitions, three subjects, and a number of resources distributed amongst them. Arrows 

represent interaction or the flow of information to or from subjects. An arrow pointing 
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towards a subject denotes that subject’s ability to read from the source of the arrow. An 

arrow pointing from a subject denotes the ability to write. A double-headed arrow shows 

read/write capability. The SKPP refers to a partitioned information flow policy (PFIP) to 

describe data flow between subjects and resources of the same or different partitions. 

This allows for more granular data flow control than Rushby’s general inter-partition 

communication concept [9]. In this example, Subject 2 located in Partition A is capable 

of writing to a resource in Partition B, which is also read/writable by Subject 3. Subject 3, 

however, has not been allowed to communicate with other resources in his partition. This 

flow of data that occurs between partitions, and between subjects and resources within 

partitions, is explicitly declared in the configuration data of the separation kernel.  

 

Figure 1.   Separation kernel configuration example from SKPP document [9]. 

The TCX implementation of a SKPP-compliant separation kernel, the LPSK, is 

discussed in the next section. 

3. TCX Least Privilege Separation Kernel 

The TCX LPSK is a separation kernel implementation that is compliant with the 

SKPP [10]. It enforces two data flow policies: partition-to-partition and subject-to-

resource. The intersection of these two policies produces a correct SKPP PIFP. The 

subject-to-resource policy determines what resources a subject may read from or write to. 

Between partitions, the partition-to-partition policy determines what resources a subject 
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located in another partition may interact with. As required by the SKPP, the LPSK is 

configured prior to system operation by way of a configuration vector that defines the 

partitioned subjects and resources, and PIFP of the system [9].  

One type of resource made available to subjects in an LPSK system is a segment. 

Segments represent blocks of data that subjects may read from or write to during the 

course of their execution. A segment that is ephemeral and exists only in primary 

memory is referred to as an “mseg” while a segment that is stored long-term across 

multiple system power cycles is called a data segment, or “dseg.” The TCX LPSK 

Storage Hierarchy, which provides mechanisms for storing and retrieving data segments, 

is discussed in the next section. 

B. STORAGE HEIRARCHY  

The applications that run on the LPSK require several basic system services 

regarding the maintenance and persistence of their data. First, they must be able to use 

portions of system primary memory to perform their operations, and second they may 

save the contents of their primary storage to a secondary storage area for later retrieval. 

Applications may also require certain data be available at the beginning of their 

execution, e.g., when an LPSK system has just started. This data must be available from 

some secondary store that is present before system startup.  

These expectations are common on many modern operating systems, and have 

traditionally been served by a memory manager and file system. Memory managers allow 

applications to reserve portions of system memory while preventing unwanted 

modification of protected or otherwise unshared memory. File systems store application 

and system data on some medium, and maintain data structures necessary to track the 

locations of various data segments. The LPSK Storage Hierarchy subsystem is available 

to the LPSK memory manager for the storage and retrieval of data segments. 

The following sections discuss traditional file systems as secondary storage 

managers, the LPSK Storage Hierarchy as a specialized subsystem that supports the 

LPSK mission of data-domain separation, and the concept of data segments and how they 

are stored. 
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1. File Systems 

Long-term storage of application data in primary storage (main system memory) 

is not possible due to the volatility of memory. Random-access memory (RAM) 

maintains its state by applying electrical current to a series of transistors (SRAM) or 

transistors and capacitors (DRAM). When a system is turned off and the electrical current 

is no longer applied, any information stored in memory is rapidly lost. The cost of 

transistor-based storage is also a concern. While much faster in terms of operations per 

second, transistor-based storage is much more expensive than non-volatile storage. 

Secondary storage provides long-term, stable storage of data that persists across system 

power states. This has traditionally been accomplished in contemporary computer 

systems by use of magnetic hard disk drives, though there is a slow trend toward large-

scale solid-state drives. Generally, a file system is responsible for maintaining data on a 

non-volatile storage medium in a way that makes files accessible to the rest of the system. 

The architecture of various storage media has often influenced the design of 

contemporary file systems. For instance, the smallest unit of data a file system presents to 

a client to interact with is derived from the way hard disk drives store binary data on their 

magnetic platters. Even though emerging solid-state drive technology does not share the 

mechanical limitations of traditional hard disk drives, the conventions developed around 

the use of hard disk drives are still generally applied to the new class of solid-state drives. 

Hard disk drives store binary data on rotating magnetic platters, or disks. The 

surface of the platters is partitioned into many disk sectors. A sector is read or written in a 

single atomic operation. Each sector traditionally stores 512 bytes of data, although hard 

disk drive vendors have agreed to increase sector sizes to a standard of four kilobytes in 

the near future [11]. The hard disk drive controller—the integrated circuits that facilitate 

communication between the hard disk drive and an overall computer system—presents 

the collection of physical sectors as a linear span of addressable blocks [12]. These 

logical blocks are mapped to physical sectors by the hard disk drive controller. File 

systems use this logical view of hard disk drives to store files. 
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A file is a bounded sequence of data bytes that is meaningful to the system or 

applications that run on a system. A file system is a collection of files and the data 

necessary to determine the boundaries between files on the medium in which they are 

stored [13]. A file system’s locater information, or meta-data (data about the data stored 

in the file system), maintains the actual location of files by address on the medium, 

addresses available for allocation to files, and the logical structure of a file hierarchy. File 

systems can provide a logical model of a file hierarchy by identifying the location of files 

within a tree structure comprised of directories and sub-directories. 

File system directories are special interpretively accessed objects that contain 

information about their direct descendents in the logical hierarchy. This includes both 

location and metadata information. File systems that maintain only one directory are 

considered to be flat or single layer file systems, while hierarchical file systems are those 

that allow the creation of sub-directories as children of the primary directory [13]. In 

either case, applications that utilize a file system to store data need not be aware of the 

physical layout of data bytes across the storage medium, but can instead rely on a naming 

convention to identify and reference files. 

The size of files is measured in bytes. Files can be expected to grow or shrink in 

size as they are modified. They can also be removed entirely. Also new files may be 

created. In order to accommodate dynamic restructuring of its data, file systems partition 

their storage media into individual blocks of some byte length and maintain a list 

referencing every block the file system is responsible for [13]. This partitioning allows a 

file system to reduce the amount of memory required to address all of its space, while 

allowing files to be allocated across consecutive or nonconsecutive free blocks using 

group chaining. Even though a file might not be located on consecutive blocks of the 

medium due to fragmentation, the file system can follow the linked list produced by 

group chaining to find each block that comprises the file. 

Figure 2 demonstrates the allocation of a file named “myfile” across a series of 

blocks in a file system. Omega, Ω, denotes the end of a group chain of blocks, while an 

empty block means that block has not been allocated to a file and is available for 

allocation. Any other value represents the address of the next block in the group chain the 
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file system should read from for the next part of a file. The directory mentioned 

previously resides at the first block and contains the single entry for “myfile”. The 

directory shows that the first block of the group chain that contains “myfile” is at address 

1 in the overall group of blocks. The entry at block 1 tells the file system that the next 

block of “myfile” is located after it at block 2. Following the linked list produced by the 

group chaining, the file system learns that the last block of the file is located at block 5. 

The fact that block 3 is empty suggests that it was previously allocated to a file that is no 

longer present in the file system. In the simplest file allocation scheme, if a new file is 

added to this example layout, it would be allocated block 3 for the first part of the file. If 

any successive blocks were necessary to store the file, they would be allocated at block 6 

and sequentially thereafter.  

 

Figure 2.   Example of file allocation across a logical file system block set 

File systems store system and application data on non-volatile (or volatile) media. 

They abstract the complexity of organizing files on a storage medium and provide a 

simple hierarchical structure of files to users and applications. The following section will 

show that the LPSK Storage Hierarchy is a specialized file system that provides similar 

functionality while adhering to design specifications of the LPSK and the TCX project.  

2. LPSK Storage Hierarchy as a File System 

The LPSK Storage Hierarchy (hereafter referred to as the storage hierarchy) 

provides secondary storage by arranging data into a hierarchical set of data segments. A 

data segment is an abstraction for data storage and is used as a container for a subject’s 

data in primary memory and secondary storage [14].  During the operation of the LPSK 

system, the file system retrieves data segments from the storage hierarchy to load into a 
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subject’s primary memory space, or flushes segments located in primary memory into the 

appropriate secondary storage segment. In this mode of operation, the storage hierarchy is 

analogous to a traditional file system, where data segments are similar to files and the 

overall storage hierarchy is analogous to a file system. However, there are some 

important distinctions. 

Since the resources and data to which a subject has access are statically declared 

as part of the system’s configuration, no new secondary storage data segments can be 

created during system operation. Likewise, data segments cannot be destroyed during 

operation. The dimensions of data segments in terms of their length in bytes are also 

declared as part of the configuration of the system. These three considerations imply a 

storage hierarchy whose structure and dimensions are static.  

The storage hierarchy organizes data segments in a tree structure beginning with a 

notional root node, ‘/’, that represents the root directory. Each node of the hierarchy may 

have one or more child nodes, up to a maximum number of children defined in the 

configuration of the system. Node entry numbers (the name of the node that differentiates 

it from its siblings) may be any number between zero and the maximum number of 

children minus one as mentioned before. Child nodes of the same parent may not share 

the same label. Concatenating a child node’s label with its parent’s label separated by 

forward slashes produces the absolute path to that node from the root node. In our 

interpretation of the storage hierarchy, a child node is either a data segment or a directory 

node. Data segment nodes are leaf nodes that correspond to secondary storage data 

segments while directory nodes correspond to internal nodes within the tree that may 

contain additional children nodes.  

Figure 3 shows a logical model of a storage hierarchy which contains six 

secondary storage data segments and four directory nodes. The arrows show the lineage 

of parent nodes. 
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Figure 3.   Example of a notational storage hierarchy tree structure 

 During configuration of an LPSK system, the exact structure of the storage hierarchy and 

dimensions of data segments are defined, and the contents of the secondary storage data 

segments are pre-loaded as necessary. The LPSK ensures that only subjects that are 

configured to access the corresponding data segment in primary memory, as defined by 

the LPSK system configuration, may access that secondary storage data segment in the 

storage hierarchy during run-time [14].  

Accessibility to secondary storage data segments is provided by the three 

operations subjects may perform on data segments; swap in, swap out, and flush. A 

subject’s primary memory space is limited by the configuration of the system and 

indirectly by the physical resources provided by the hardware on which the system runs. 

Because of potential limited space, subjects may need to move their data segments out of 

primary memory and into secondary storage, followed by the reverse. Swapping a data 

segment into a subject’s primary memory space loads the contents of the corresponding 

secondary storage data segment. Swapping out a data segment overwrites the contents of 

the secondary storage data segment with the contents of the data segment in primary 

memory and frees that primary memory for the swapping in of other data segments 

associated with that process. Flushing a data segment overwrites the contents of a 

secondary storage data segment while keeping the corresponding data segment intact in 

primary memory.  
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After an LPSK platform is configured and the LPSK is started, the LPSK 

initialization routine reads the configuration data and imports the specified data segments 

into primary memory.  The initialization routine manages this importation by passing 

requests to the storage hierarchy. The storage hierarchy constructs a data structure in 

main memory that associates a data segment handle with the absolute path of a secondary 

storage data segment. When the kernel or its subjects need to perform an action on an 

imported segment, the handle is passed to the storage hierarchy as an identifier of the 

segment to be acted upon.  

This section has demonstrated that the LPSK storage hierarchy is a specialized 

file system that facilitates the secondary storage of LPSK data segments. The concept of 

a data segment in primary memory or secondary storage has been introduced along with 

the tree-like structure of the storage hierarchy. The next chapter of this thesis describes 

the requirements, technical design, implementation methodology, and implementation of 

the storage hierarchy. 
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III. DESIGN AND IMPLEMENTATION 

This chapter is separated into four sections: requirements, design, implementation 

methodology, and implementation. The requirements for the storage hierarchy prototype 

are described first, followed by a description of how the requirements are met by the 

design of the storage hierarchy prototype’s data structures and interfaces. The third 

section describes the development environment and tools used to implement the storage 

hierarchy prototype. The last section describes the implementation of the storage 

hierarchy interfaces. 

A. REQUIREMENTS 

The requirements for the storage hierarchy prototype are derived from two 

sources: a functional specification and a collection of general platform-related 

requirements. A functional specification of the storage hierarchy is located in section 

14.5.1 of the TCX LPSK Product Functional Specification (see Appendix) and includes a 

list of twelve requirements [14]. These twelve requirements are identified and discussed 

in the next section, followed by a section addressing an additional set of general 

requirements that inform the design of the storage hierarchy prototype developed in this 

thesis.  

1. Storage Hierarchy Functional Specification 

The TCX LPSK Product Functional Specification details the functional 

requirements of the LPSK. Section 14.5.1 of this specification lists twelve requirements 

for the organization of secondary storage data segments (hereafter referred to as data 

segments). The following list paraphrases these requirements: 

1. Data segments are organized in a tree-like hierarchy, where nodes of the tree 

represent data segments. 

2. The root of the tree is a node named ‘/’ and is not used to represent a data 

segment. 
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3. Nodes shall have any number of child nodes up to a configured maximum 

defined when the secondary storage media is formatted. 

4. Nodes are identified by a name consisting of any number from zero up to some 

configured maximum minus one. 

5. The name of a data segment is the list of node names from the root node to the 

specified data segment.  

6. Data segments are limited in size to 232 bytes (4 GB). 

7. The “/0” node and its children are reserved for internal use by the LPSK. 

8. Only software that runs in a non-LPSK context may create data segments in the 

storage hierarchy. 

9. A message authentication code is generated and saved for a data segment 

whenever it has been created by configuration software or when a data 

segment in primary memory is flushed to the corresponding data segment in 

secondary storage during LPSK runtime. 

10. The integrity of data segments is verified by the LPSK whenever a data 

segment is swapped into primary memory from secondary storage. Failure in 

verification will result in some action according to the context of the system 

when verification is attempted. 

11. The LPSK Initializer provides data segment selectors to subjects that have 

been configured to access those data segments. 

12. During runtime, subjects shall use selectors supplied by the LPSK to perform 

actions on data segments. 

The term “selectors” refers to a special token or handle a subject uses to identify 

which data segment the subject wishes to have some action performed on. The LPSK 

Initializer is an LPSK module that is responsible in part for creating and supplying the 

appropriate selectors to the appropriate subjects, based on the configuration of the LPSK 

system.  
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The first five requirements taken together prescribe the tree-like structure of the 

storage hierarchy discussed in Chapter II. In that discussion, a node of the tree is 

described as either a data segment node or directory node. Early design decisions resulted 

in this unnecessary and unspecified distinction in a node’s type. This exclusive treatment 

of nodes is imposed by the model of the storage hierarchy developed in this thesis and is 

not a restriction derived from the listed requirements. Eliminating this distinction would 

allow an inner node (a node that has child nodes) to be a data segment. In the file system 

analogy, this lack of distinction is equivalent to allowing the creation of directories and 

subdirectories as files that may also contain files. The storage hierarchy model described 

in this thesis does not allow the overloading of nodes—resulting in nodes that are both 

data segment nodes and directory nodes—to avoid cognitive dissonance arising as a 

result of the storage hierarchy to file system analogy. These five requirements and the 

overall structure of the storage hierarchy are achieved through the creation of directory 

table data structures, which are discussed in detail in a subsequent section. 

The sixth listed requirement relates to the storage of a data segment’s size in bytes 

as an unsigned 32-bit integer value. The seventh listed requirement designates a special 

sub-tree of the storage hierarchy that contains data segments used internally by the LPSK. 

These segments are not made available to external subjects (subjects executing in LPSK 

partitions). The storage hierarchy is not responsible for enforcing this policy however, 

and relies on the LPSK initialization process to restrict selectors for internal use from use 

by external subjects.  

The eighth listed requirement, that only software that does not run as part of the 

LPSK system may create data segments, leads to the need for an offline storage hierarchy 

configuration tool. While such a tool is outside the scope of this thesis, the storage 

hierarchy prototype must include documented external interfaces to allow such a tool to 

modify the structure and contents of an LPSK storage hierarchy. These configuration 

interfaces should be executable on the same operating system the configuration tool runs 

on, such as the open source Linux operating system. These external interfaces are 

identified in Section B of this chapter.  
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The ninth and tenth listed requirements call for the creation and maintenance of 

message authentication codes (MAC) for each data segment in the storage hierarchy. A 

MAC is generated based on the contents of a data segment and a MAC key known by the 

LPSK, and is stored in the metadata associated with the data segment. The MAC for a 

given data segment is updated every time the contents of that data segment changes in a 

permissible context, e.g., during configuration or when a data segment is swapped out to 

the storage hierarchy during LPSK system execution. If the contents of a data segment 

are modified in some other context, such that a new valid MAC is not generated, the 

LPSK will not permit that data segment to be read into primary memory. 

The last two requirements prescribe the process of providing and using data 

segment selectors. The LPSK provides subjects zero or more selectors based on the 

configuration of the system. In addition to memory management of segment data, 

subjects may use these selectors as the target of swap in, swap out, and flush system calls. 

These requirements are achieved during initialization of an LPSK system by creating a 

database that maps selectors to data segments, and providing storage hierarchy runtime 

interfaces that accept selectors as parameters. These interfaces and the selector to data 

segment database are described in Section B of this chapter. 

2. Additional Storage Hierarchy Requirements  

All software developed for the TCX LPSK project must adhere to a set of 

standards described by the Software Development Standards document, a product of the 

Center for Information Systems Security Studies and Research (CISR). This document 

specifies that an ANSI-C compliant programming language is to be used when 

programming kernel code [15]. Any storage hierarchy related code that is executed 

during LPSK initialization or runtime must therefore be developed with the C 

programming language. 

The LPSK binary (the executable LPSK machine code) must be compiled by the 

Open Watcom C compiler [16]. This compiler was chosen over other open source 

compilers—such as the GNU Compiler Collection [17]—because it supports a large 

memory model [18]. Storage hierarchy configuration interfaces, however, are not 
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included in the LPSK binary due to previously enumerated requirements, and are not 

necessarily restricted to compilation by the Open Watcom compiler.  

The storage hierarchy will interact with its storage medium via a hardware 

abstraction layer (HAL). A HAL hides a particular device’s architecture and presents a 

set of interfaces common to the overall class of devices, such as hard disk drives. This is 

a necessary requirement as no hard disk device drivers have been developed for the 

LPSK at the time of this writing. Testing the storage hierarchy prototype required a 

special construct located in a test system’s memory or secondary storage that mimics an 

LPSK storage hierarchy’s storage medium. A standardized HAL makes it possible for the 

storage hierarchy prototype to communicate with both the special testing construct and 

future LPSK hard disk driver software.  

B. DESIGN 

The design of the storage hierarchy prototype attempts to satisfy the requirements 

identified in the previous section. Golden and Pechura’s description of a hierarchical file 

system is used as the basis for the design of the storage hierarchy’s internal structure [11]. 

This section describes both the internal structure of storage hierarchy constructs and the 

various interfaces used to interact with the storage hierarchy. 

Figure 4 provides an overview of the users of storage hierarchy interfaces and 

how those interfaces are organized in relation to the storage medium. The LPSK makes 

use of both initialization and runtime interfaces, while a configuration tool accesses the 

storage hierarchy by the configuration interface. These interfaces oftentimes share 

common algorithms and methods of storage hierarchy access that are identified as the 

“Common Components” of the storage hierarchy. The bottom layer of the logical layout 

of interfaces depicts the hardware abstraction layer interacting with the storage medium 

by way of middleware. This middleware comprises the device drivers and specifically 

written programs that translate HAL commands into actionable storage medium 

read/write instructions.  These interfaces are described in detail after a description of the 

storage hierarchy’s internal structures. 
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Figure 4.   Storage hierarchy logical interface layout. 

1. Internal Structure 

The storage hierarchy organizes data segments in two ways. The first is by the 

physical location of data segments across the storage medium on which the storage 

hierarchy resides. The second is by data segments’ logical locations within the tree 

structure of the storage hierarchy. Both kinds of organization are achieved with data 

structures that are stored together with the data segments on the storage medium.  

LPSK systems may be periodically taken offline for maintenance and 

configuration. As the resource needs of subjects change, system operators may wish to 

modify an LPSK system’s storage hierarchy by creating or removing data segments 

during these periods of maintenance. Section 12 of the LPSK functional specification, 

entitled “LPSK Offline Manager,” reinforces this notion of an evolving storage hierarchy 

configuration: “The LPSK Offline Manager shall provide a user interface to manage 

existing secondary storage segments, including the display, deletion, initialization, 
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duplication, movement, backup, and restoration of segments [14].” The LPSK Offline 

Manager is a configuration tool that uses the storage hierarchy configuration interfaces to 

modify a storage hierarchy.  

a. Physical Organization & Clustering 

The concept of partitioning a storage medium’s space into a number of 

blocks, or clusters of disk sectors in the case of hard disk drives, was introduced in 

Chapter II. The storage hierarchy interacts with an abstract view of its storage medium by 

reading and writing clusters. These clusters are the logical file system “blocks” described 

by Golden and Pechura, and are comprised of eight disk sectors of 512 bytes each for a 

total of 4 kilobytes per cluster.  In Chapter II, an example file was shown to be allocated 

across noncontiguous blocks of a file system. Similarly, data segments are physically 

allocated across contiguous or noncontiguous clusters of a storage medium. The 

constituent clusters of a data segment are recorded in a data structure that organizes the 

physical location of all data segments of a storage hierarchy.  

The physical location of a cluster of the storage medium refers to its 

location in the logical span of sectors presented by the storage medium. This span of 

sectors and the collection of sector clusters are both ordered sets upon which an index is 

imposed. Figure 5 illustrates this concept using two-sector sized clusters for the sake of 

brevity. In this example, the storage hierarchy begins grouping sectors into clusters 

beginning at an arbitrary offset of four sectors from the beginning of the storage medium.  

  

Figure 5.   Logical view of storage medium and two-sector cluster assignment 

 



 22

A cluster’s location is found by adding the cluster offset to the product of 

the cluster’s index and the number of sectors per cluster:  

 

Using this equation, the third cluster can be found beginning at sector index eight. 

b. Segment Allocation Table 

The segment allocation table (SAT) is the storage hierarchy internal data 

structure responsible for the physical organization of data segments on the storage 

medium. It is a table that records the allocation status of every cluster of the storage 

medium assigned to the storage hierarchy. The allocation status of a given cluster 

represents one of three states: unallocated, allocated, or allocated and terminal. 

Unallocated clusters are available for allocation to data segments created during 

configuration, while allocated clusters are used to store all or part of a data segment. If a 

given cluster is allocated but not terminal, there is an additional cluster allocated to the 

same data segment. The SAT stores the index value for this next cluster in the “Next 

Cluster Index” field.  Looking up the SAT row that corresponds to this next cluster index 

reveals its allocation status and potentially the SAT index of yet another cluster. In this 

way a list or chain of clusters can be read from the SAT by recursive lookup based on the 

index value for the first cluster allocated to a data segment. A cluster that has a status of 

allocated and terminal is the last cluster of the chain.  

Figure 6 illustrates an example SAT where three clusters have been 

allocated to two data segments. The first cluster at index zero is allocated to a data 

segment and is that data segment’s only cluster. The cluster at index one is marked as 

allocated but not terminal. The “Next Cluster Index” field shows that the next cluster in 

the chain can be found at SAT index two. Looking up the cluster at SAT index two 

reveals that this cluster is last in a two-cluster chain.  
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Figure 6.   Example segment allocation table. Omega denotes empty SAT index value. 

A SAT entry is comprised of a 2-bit field that contains the allocation 

status of a cluster and a 30-bit field that contains the SAT index of the next cluster.  Table 

1 contains the hexadecimal values for the allocation status field. 

Status Value
Unallocated 0x0 
Allocated 0x1 
Allocated & Terminal 0x2 

Table 1.   Allocation Status field values. 

The SAT data structure is located on the storage medium in reserved 

space, before space designated for storing data segments. During LPSK system 

initialization, cluster chains belonging to data segments which have been made known 

are parsed from the SAT and loaded into memory. During configuration, the SAT is 

modified to reflect the creation or deletion of data segments. Both of these activities 

require a priori knowledge of the SAT index for the first cluster of every data segment. 

This information is stored in a metadata structure that describes the logical layout of data 

segments in the tree-like structure of the storage hierarchy, which is described next.   

c. Directory Table 

Directory table data structures are used to reference and organize data 

segments in terms of the logical hierarchy of the storage hierarchy. A directory table 

exists for each parent node of the tree and is used to record information about child 

nodes, including each child node’s first cluster SAT index, actual size in bytes, and other 
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metadata. If a parent node has ten child nodes, its directory table will contain ten rows. 

Table 2 describes the type and size of the fields of the directory table structure.  

Directory Table 
Byte Offset  Size (in bytes) Description 
0x00  4  Name of node 
0x04  4  First SAT index  
0x08  4  Actual size (in bytes) 
0x0C  32  256-bit hash (MAC) 
0x2C  1  Type flag (parent or data segment) 

Table 2.   Directory table structure description. 

The name of a node is an unsigned 32-bit integer from zero up to the 

preconfigured maximum specified during configuration of the LPSK system. The first 

SAT index field contains the index of the row of the SAT that refers to a data segment’s 

first cluster. With this information gathered from a directory table entry, SAT cluster 

chains can be parsed and data segments located on the storage medium. The size of data 

segments may not necessarily be a multiple of the storage hierarchy cluster size. 

Therefore the actual data segment size as specified during configuration is stored to 

inform storage hierarchy interfaces when to ignore the unused portions of clusters. A 

256-bit field is used to store the MAC generated to ensure data segment integrity.  

The last field of the directory table brings about an important result: 

Directory table structures are stored in the storage hierarchy in the same way as data 

segments. The type flag field determines if a child node is treated as a data segment or a 

directory table node by the storage hierarchy. If the type flag is set to “data segment,” the 

node referenced is a leaf node containing a data segment. If the type flag is set to 

“parent,” the child node contains a directory table structure. The unsigned integer value 

0x1 denotes a data segment node while the value 0x2 denotes a directory table node. 

Directory tables are special internal storage hierarchy segments that are never revealed 

externally. Directory tables may consume more than one cluster in the same manner that 

data segments do. This occurs if the configured maximum number of child nodes per 

directory node exceeds the number of directory table rows that can be stored on one 

cluster. 
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Each cluster of a directory table contains an additional structure used to 

store directory table row statistics and the information necessary to follow directory table 

cluster chains. Table 3 describes the purpose and size of this data. A flag indicates if the 

directory table is continued in an additional cluster. If it is, the next cluster’s SAT index 

is stored. The total number of table rows a directory table cluster contains is also stored, 

along with the current number of unused rows in that cluster. A summation of unused 

rows over all clusters of a directory table is updated and retrieved from the first cluster of 

the overall directory table cluster chain. By maintaining this information storage 

hierarchy modules can be prevented from performing futile searches for free directory 

table rows when there are no unused rows available. 

 

Directory Table Cluster Information 
Byte Offset  Size (in bytes)  Description 
0x00  4  Total number of directory table rows  
0x04  4  Number of free, unused rows in this cluster 
0x08  4  Overall number of unused rows in all clusters used for 

directory table 
0x0C  4  SAT index of next directory table cluster 
0x10  1  More clusters flag 

Table 3.   Directory table cluster information structure description 

The root of the storage hierarchy tree is represented by a directory table 

that always begins at cluster index zero. This convention provides a static entry point into 

the storage hierarchy from which all other directory tables and data segments can be 

located. Figure 7 demonstrates a simple storage hierarchy layout that shows the ‘/’ root 

node’s two children, one of which is a data segment and another which is a directory 

table node. The directory table node “/5” has two children itself, both data segments.  
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Figure 7.   Example logical storage hierarchy layout with directory tables 

Directory tables are created and modified during storage hierarchy 

configuration. They are written to clusters on the storage medium at this time, and may 

subsequently be rewritten as new child nodes are added to particular parent nodes. During 

LPSK system initialization, data segments are located by following the paths created by 

the linking of directory tables, as shown in Figure 6.    

d. Other Storage Hierarchy Databases 

A storage hierarchy contains several other data structures used internally 

to maintain state and configuration information. This data is stored on the storage 

medium in data blocks located before the SAT. Table 4 shows the first of these data 

structures, which contains information about the layout of the storage hierarchy on the 

storage medium. The first three fields contain the location of other storage hierarchy 

databases in terms of their offset into the logical span of the storage medium. The storage 

hierarchy cluster size is also defined along with the size of the SAT and the maximum 

number of child nodes per directory node allowed. This data structure is written when an 

LPSK system’s storage medium is first formatted in preparation for configuration. 
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Static Configuration Data 
Byte Offset  Size (in bytes)  Description 
0x00  4  Offset from start of storage medium to SAT 
0x04  4  Offset from start of storage medium to first cluster  
0x08  4  Offset from start of storage medium to Cluster database  
0x0C 4 Cluster size in number of 512-byte blocks 
0x10 4 The size of the SAT in number of 512-byte blocks 
0x14 4 The number of SAT rows 
0x18 4 The maximum number of child nodes per directory node

Table 4.   Static Configuration data structure description 

An additional data structure maintains a count of the state of storage 

hierarchy clusters, including how many clusters are allocated and unallocated. By 

keeping a count of the total number of free clusters available for allocation, storage 

hierarchy interfaces do not have to scan the entirety of the SAT to determine if there are 

enough free clusters every time a new data segment is created. A separation of allocated 

cluster counts based on what type of data clusters contain—data segments or directory 

tables—provides some insight into the amount of metadata overhead present in the 

storage hierarchy, but this information is not required or used by any interfaces. Table 5 

enumerates this cluster accounting data structure. 

 

Cluster Values 
Byte Offset  Size (in bytes) Description 
0x00  4  Total number of clusters 
0x04  4  Free/Unallocated clusters  
0x08  4  Clusters allocated to data segments 
0x0C  4  Clusters allocated to directory tables 

Table 5.   Cluster values data structure description. 

e. Handle Table  

The handle table data structure is distinct from all previously discussed 

data structures in that it only exists in the primary memory of an LPSK system. The 

handle table is constructed during LPSK initialization and associates handles, or data 

segment selectors, to particular data segments of the storage hierarchy. Data from the 
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handle table is used during runtime, after initialization, to perform operations on 

secondary storage data segments. Table 6 displays the contents of this data structure. 

 

Handle Table 
Byte Offset  Size (in bytes) Description 
0x00  4  Handle 
0x04  4  Size (in bytes) 
0x08  4  First SAT index 
0x0C  4  Parent’s first SAT index 
0x10  4  Directory table index 

Table 6.   Handle table data structure description. 

The relevant information of every secondary storage data segment to be 

made known in an LPSK system, is recorded in the handle table data structure. This 

information includes the handle by which the LPSK refers to a particular data segment, 

the data segment’s size in bytes, and the SAT index of its first cluster. This information 

facilitates the reading and writing of data segments from the storage hierarchy. The SAT 

index of the first cluster of a data segment’s parent is also recorded, along with the index 

within the directory table that refers to that data segment. This information allows storage 

hierarchy interfaces to read and update metadata, such as a data segment’s MAC, during 

runtime. 

The next section describes the interfaces the LPSK and configuration tools use to 

access the internal data structures described in this section.  

2. External Interfaces 

As a module of the overall LPSK, the storage hierarchy makes its services 

available through a number of external interfaces. These interfaces are said to be external 

because they are designed to be used by other modules of the LPSK. The availability of 

these external interfaces depends on the three distinct modes of an LPSK system: 

configuration, initialization, and run-time. In configuration mode, the storage medium on 

which the storage hierarchy resides is attached to and modified by a non-LPSK system 

running configuration software. During initialization mode, the storage hierarchy is 
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prepared for operation by an interface that constructs a handle table data structure in 

primary memory which records all data segments exported to system subjects and data 

segments used internally by the LPSK. Data segments may also be swapped in during 

this mode. In the run-time mode, the storage hierarchy exposes interfaces used to flush, 

swap in, and swap out data segments from secondary storage. 

The technical specification of the external interfaces (see Appendix A) 

categorizes interfaces based on the mode of system operation for which they are meant to 

be used.   

a. Configuration Interfaces 

The configuration interfaces of the storage hierarchy are used to construct 

the layout of a storage hierarchy on a storage medium and populate it with data segments. 

The collection of configuration interfaces provides the application programming interface 

(API) that is used by storage hierarchy configuration tools. The thirteen individual 

interfaces are listed in categories that reflect their usage. 

Storage hierarchy layout interfaces: 

• initialize_databases: Loads storage hierarchy 
configuration, cluster, and SAT databases into primary memory 
from the storage medium.  

• make_dseg: Creates a data segment node off of a parent node. 

• del_dseg: Removes a data segment node and zeros out its 
associated clusters.  

• make_subtree: Creates a directory table node off of a parent 
node. 

• del_subtree: Removes a parent directory node and all of its 
child nodes of all types. This interface descends a sub-tree 
beginning at the specified directory table node, removing all 
descendent nodes. 

• get_child: Returns the names and node types of the specified 
parent’s child nodes. A configuration tool can effectively 
enumerate a storage hierarchy’s layout using this interface. 
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Data segment access interfaces: 

• open_dseg: Returns a handle associated with a data segment that 
is used by other interfaces to access the contents of data segments. 

• write_dseg: Writes data into the data segment associated with 
the supplied handle. 

• read_dseg: Reads data from a data segment associated with the 
supplied handle.  

• close_dseg: Generates a new MAC for the data segment 
associated with the handle then purges that handle from the handle 
table. 

Data segment metadata interfaces: 

• get_dseg_size: Returns the actual size of a data segment. This 
interface may be used by a configuration tool to learn how large a 
buffer to allocate in primary memory prior to reading the contents 
of a data segment. 

• check_hash: Compares an integrity hash of the contents of a 
data segment with the MAC stored in that data segment’s 
metadata. 

b. Initialization Interfaces 

The initialization interfaces of the storage hierarchy are used to construct 

and populate the handle table data structure prior to LPSK runtime. Interfaces used to 

accomplish the swap in operation are also provided. 

• initialize_databases: Loads storage hierarchy 
configuration, cluster, and SAT databases into primary memory 
from the storage medium. Initializes an empty handle table in 
memory with as many rows as necessary to record the specified 
number of handle to data segment associations. 

• get_handle: Loads the specified data segment’s meta-data into 
the handle table database and returns a handle to be used for future 
operations on that data segment. 

• read_in: Loads the data segment associated with the specified 
handle from the storage hierarchy storage medium into the 
specified buffer in primary memory. This interface supports the 
swap in operation. 
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• get_dseg_size: Returns the size of the data segment 
associated with the specified handle. 

• get_dseg_hash:  Returns the MAC value stored in the meta-
data of the data segment associated with the specified handle. 

c. Runtime Interfaces 

The storage hierarchy runtime interfaces are used by the LPSK to perform 

swap in, swap out, and flush actions on data segments. Both swap out and flush 

operations are accomplished using the same interface as they have the same effect from 

the perspective of the storage hierarchy. With the exception of the write_out 

interface, all runtime interfaces behave the same as their initialization interface 

counterparts. 

• read_in: Loads the data segment associated with the specified 
handle from the storage heiarchy storage medium into the specified 
buffer in primary memory. 

• write_out: Writes the data segment from primary memory 
associated with the specified handle from the specified buffer, then 
calculates and stores the new data segment MAC. This interface is 
used by the swap out and flush operations. 

• get_dseg_size: Returns the size of the data segment 
associated with the specified handle. 

• get_dseg_hash:  Returns the MAC value stored in the meta-
data of the data segment associated with the specified handle. 

3. Hardware Abstraction Layer 

The storage hierarchy HAL is designed to provide an abstract and simple view of 

the storage medium. It provides the interfaces to the storage medium used to read and 

write clusters, SAT data, and storage hierarchy configuration databases.  

• read_cluster: Reads the specified cluster into memory. 

• write_cluster: Writes data to the specified cluster. 

• read_dir: Reads the specified cluster containing a directory table 
structure into memory. 

• write_dir: Write a directory table structure to the specified cluster. 
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• read_blocksize: Read a disk block-sized data structure into memory. 

• write_blocksize: Write a disk block-sized data structure to disk 

C. IMPLEMENTATION METHODOLOGY 

The storage hierarchy external interfaces and common components were 

developed in ANSI-C89 standard programming code with the assistance of the Apache 

Software Foundation licensed Eclipse Platform. The Eclipse Platform is an integrated 

development environment that provides various features to assist developers in the rapid 

development and compilation of code. An Eclipse project is the collection of program 

source files and additional internal databases that contain meta-data about various aspects 

of the program. Eclipse recognizes and records program function and variable names and 

structures in its databases as they are authored to provide helpful functionality to 

programmers. Such functionality includes auto-completion of C structure members and 

generation of function call hierarchies. The development and testing platform consisted 

of a Fedora Linux (kernel version 2.6.31.5) workstation. The GNU Compiler Collection 

(GCC) C compiler was used to produce binary executable modules of storage hierarchy 

configuration interfaces and common components for the purposes of testing their 

functionality and correctness.  

An Eclipse C project was created as a collection of C program source and header 

files that together incorporate the storage hierarchy external interfaces and common 

components. C pre-processor conditional directives embedded within each module 

determine if module functions are compiled as part of a configuration tool or the LPSK 

binary. The distinction between LPSK and non-LPSK context modules and functions is 

described later in this section.  

1. Storage Medium Construct 

 The storage hierarchy prototype requirements call for a test construct located in 

primary memory or secondary storage of a test machine that mimics the storage 

hierarchy’s storage medium. This simulated storage medium is necessary during 

development and testing of the prototype to ensure the common components used by 

external interfaces correctly read and modify hierarchy structures. It is also possible to 
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test for storage hierarchy structure and data segment permanence and retrievability if the 

construct is located on the test machine’s secondary storage. 

The special construct was created using a virtual hard disk drive which is attached 

to the test machine as a raw, unformatted disk device. The Unix system command line 

tool dd is used to read and write from the virtual disk. The dd tool allows reading and 

writing raw binary data from block I/O devices without regard for file systems or 

partitioning conventions. The storage hierarchy prototype hardware abstraction layer 

implementation invokes the dd tool by constructing a command line string and calling the 

C library function popen(). This function executes the supplied string as a Linux shell 

command and returns a file stream from the process. The arguments supplied to dd 

through the command line string tell dd where to read and write from the disk device. 

Figure 8 depicts the sequence of C instructions that accomplishes this.  

 

Figure 8.   Example HAL dd string that writes a block of 512 bytes from the pointer 
buffer to the device /dev/sdb 

D. IMPLEMENTATION 

The storage hierarchy interface prototypes developed in this thesis are compiled 

and linked based on which external software program uses them. When interfaces are 

used by the LPSK binary, those interfaces are said to be executed in an LPSK context. 

The configuration interfaces execute in a non-LPSK context during the configuration of 

an LPSK system and contain the program logic necessary to perform all storage hierarchy 

maintenance operations. The initialization and runtime interfaces execute in the LPSK 

context and perform a subset of these operations. Both storage hierarchy interface 

contexts share common components such as helper functions and data structures. These 

functions and data structures are used by the interfaces to perform common operations, 

such as navigating the storage hierarchy tree structure, or retrieving data segment meta-

data. The module dependencies of both interface contexts are introduced next, followed 

by a description of the common components. 
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1. Configuration Interface Implementation 

Figure 9 illustrates the module dependencies of the storage hierarchy 

configuration interfaces and common components. Each diagram element represents a C 

program module. The common components consist of the modules used by the 

configuration interfaces. Modules are layered in terms of their dependencies. For 

example, several configuration interfaces depend on the handle table manager module to 

provide data segment handles. The handle table manager in turn depends on the directory 

manager and SAT manager modules to retrieve directory table structures and meta-data 

associated with the desired data segment. These two modules depend on the HAL 

module, which interfaces with the storage hierarchy’s storage medium.  

 

Figure 9.   Configuration interface module dependency diagram. 

2. Initialization and Runtime Interface Implementation 

Figure 10 illustrates the module dependencies of the storage hierarchy 

initialization and configuration interfaces and common components. In contrast to the 

configuration interface dependency diagram, the initialization and runtime interfaces no 

longer have direct access to the SAT and directory manager modules, and may only 

interact with the limited facilities provided by the handle table manager. The cluster 

database manager is excluded entirely, as the statistics it maintains are useful only in the 

creation and deletion of data segments and directory structures. This reduction in 

modules reflects the reduction in the scope of storage hierarchy operations performed by 

these interfaces. 
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Figure 10.   Initialization and Runtime interface module dependency diagram including. 

3. Common Components 

The storage hierarchy common components consist of six individual C program 

modules that maintain data and perform actions necessary for the operation of various 

interfaces. Each module function is identified by which context it is used. Each module is 

described in detail in the following sections. 

a. Configuration Database Manager 

This module is responsible for maintaining the configuration database in 

memory, providing functions to retrieve configuration data that describe the layout of 

data structures on the storage medium, and the dimensions of certain constructs. 
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Config_db.c external functions 
Name  Description  Context
init_config_db Loads the configuration database into memory from 

disk. 
Both 

get_SAT_offset  Returns the block offset value to the beginning of the 
Segment Allocation Table database on disk. 

Both  

get_cluster_offset  Returns the block offset value to the beginning of the 
storage medium where data segments and directory 
table clusters are located. 

Both 

get_cluster_size Returns the size of clusters in number of 512-byte 
disk blocks. 

Both 

get_cluster_db_offset Returns the block offset value to the cluster database 
structure on disk. 

Both 

get_SAT_size Returns the size of the Segment Allocation Table in 
terms of 512-byte disk blocks. 

Both 

get_SAT_records Returns the number of 32-bit rows in the SAT Both 
get_MAX_children Returns the maximum number of children per 

directory node as defined  by an LPSK configuration 
vector 

Both 

Table 7.   Configuration database manager external functions description. 

b. Cluster  Database Manager 

This module is responsible for maintaining the cluster database in memory 

and providing functions to retrieve and update cluster values. Cluster usage values are 

used by configuration interfaces only. 
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cluster_db.c external functions 
Name  Description  Context 
init_cluster_db Loads the cluster database into memory from disk. Non-

LPSK 
get_free_clusters  Returns the number of free clusters available in the 

storage hierarchy.  
Non-
LPSK 

inc_dseg_clusters  Increases the data segment cluster value by the specified 
amount and decreases the free cluster value by the same 
amount, writes the cluster database to disk.  

Non-
LPSK 

dec_dseg_clusters Decreases the data segment cluster value by the specified 
amount and increases the free cluster value by the same 
amount, writes the cluster database to disk. 

Non-
LPSK 

inc_dir_clusters Increases the directory table cluster value by the specified 
amount and decreases the free cluster value by the same 
amount, writes the cluster database to disk. 

Non-
LPSK 

dec_dir_clusters Decreases the directory cluster value by the specified 
amount and increases the free cluster value by the same 
amount, writes the cluster database to disk. 

Non-
LPSK 

Table 8.   Cluster database manager external functions description. 

c. Directory Manager 

This module provides functions related to the storage and access of 

directory table structures and node records. Functions are provided that allow iteration 

along a path in the storage hierarchy, search for the records of particular data segment 

and directory nodes, and retrieval of data segment metadata.   

directory_mgr.c external functions 
Name  Description  Context 
dir_retrieve_dir Populates the supplied directory table structure in 

memory from a directory table cluster at the 
specified SAT index from disk. 

Both 

dir_write_dir  Writes a directory table structure to the cluster at the 
specified SAT index on disk. 

Both  

dir_retrieve_record  Returns a directory table record associated with the 
specified node from the supplied directory table 
structure in memory to the caller. 

Both 

dir_retrieve_record_ 
and_index 

Returns a directory table record associated with the 
specified node from the supplied directory table 
structure in memory. It also returns the index in the 
directory table where the record was found. 

Both 

dir_check_node_ 
Presence 

Returns TRUE if the specified node is found in the 
directory table cluster chain headed by the directory 
table referenced by supplied pointer.  

Both 

dir_get_hash Returns the hash value of the specified node from its 
directory table record. 

Both 



 38

directory_mgr.c external functions 
Name  Description  Context 
dir_get_size Returns the size of the specified data segment node Both 
dir_rtr_dir_by_path Returns the node type and SAT index of the last 

node of the supplied path after it has walked through 
the storage hierarchy tree according to the supplied 
path string.  

Both 

dir_update_hash Updates the 256-bit hash of the data segment located 
in the specified row of the supplied directory table 
with the supplied hash. 

Both 

dir_get_type Returns the node type of the specified node. Non-
LPSK 

dir_new_directory Creates a new directory table structure in memory. Non-
LPSK 

dir_delete_record Removes the record associated with the specified 
node from the supplied directory table. Returns the 
SAT index of the node’s first cluster 

Non-
LPSK 

dir_get_nth_record Returns the node name and type of the n’th occupied 
row of the supplied directory table. 

Non-
LPSK 

dir_rtr_node_SAT_ 
index 

Returns the SAT index of the specified node’s first 
cluster from the supplied directory table. 

Non-
LPSK 

dir_ins_record_and_ 
commit 

Inserts a new node record into a directory table 
structure and writes associated directory table 
clusters to disk. 

Non-
LPSK 

dir_get_num_free_ 
Records 

Returns the number of free records (and therefore 
child nodes that can be created) for a directory table 
structure cluster chain headed by the directory table 
referenced by supplied pointer 

Non-
LPSK 

Table 9.   Directory manager external functions description 

d. Handle Manager 

This module is responsible for maintaining the handle table manager in 

memory. The handle table is used in both code bases to associate a data segment with a 

handle that is then used for read/write operations. 
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Handle_mgr.c external functions 
Name  Description  Context
init_handle_manager Constructs a dynamically sized handle-to-data segment 

table in memory. 
Both 

get_handle Loads a data segment’s pertinent meta-data into the 
handle table and returns a handle used to reference that 
data segment. 

Both 

delete_handle Purges a handle table row from the handle table. Both 
write_to_handle Retrieves meta-data from the handle table row 

associated with the specified handle and calls SAT 
manager module to write to the storage medium. 

Both 

read_from_handle Retrieves meta-data from the handle table row 
associated with the specified handle and calls SAT 
manager module to read from storage medim. 

Both 

get_handle_size Returns the size of the data segment associated with the 
specified handle. 

LPSK 

get_handle_hash Returns the 256-bit hash value of the data segment 
associated with the specified handle 

LPSK 

calc_hash Calculates and returns the hash value of the contents of 
the data segment associated with the specified handle. 

Both 

update_hash Updates the 256-bit hash of the data segment associated 
with the specified handle. 

Both 

Table 10.   Handle table manager external functions description. 

e. SAT Manager 

This module is responsible for maintaining the Segment Allocation Table 

in memory and providing functions to allocate and unallocate cluster chains, and read and 

write the SAT to the storage medium. It also provides functions to read and write clusters 

and data segments from the storage medium.  
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SAT_mgr.c external functions 
Name  Description  Context 
sat_init Loads the SAT into memory. Both 
sat_alloc_clusters Creates a cluster chain of the specified size by setting 

allocation status and next SAT index values. 
Commits SAT changes back to disk. Returns the SAT 
index of the head of the chain. 

Non-
LPSK 

sat_unalloc_clusters Destroys a cluster chain starting at the specified SAT 
index by resetting the allocation status for each 
member of the chain. Commits SAT changes back to 
disk. Returns the number of SAT rows 

Non-
LPSK 

sat_get_next Returns the next SAT index value of the specified 
SAT index. 

Both 

sat_read_cluster Reads the cluster with the specified SAT index into 
memory. 

Both 

sat_write_dseg Writes data from the specified buffer to the data 
segment located with the specified handle on the 
storage medium. 

Both 

sat_read_dseg Reads data from the data segment associated with the 
specified handle from the storage medium into the 
specified buffer. 

Both 

Table 11.   SAT manager external functions description. 

E. SUMMARY 

This chapter introduced the requirements of the storage hierarchy prototype and 

presented a design. The implementation methodology was discussed and the external 

interfaces and common component external functions were enumerated. The next chapter 

contains test procedures and results for the external interfaces. 
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IV. TESTING 

This chapter presents an LPSK storage hierarchy scenario that is used to test the 

storage hierarchy prototype external interfaces. The results of each external interface test 

are grouped based on their interface category used throughout this work.  

A. TEST SCENARIO 

The test scenario consists of a 128-megabyte virtual disk that is pre-formatted to 

contain the prerequisite storage hierarchy configuration databases and segment allocation 

table. This relatively small virtual disk size (compared to modern disk drives) was chosen 

to make test cases involving disk space limitations easier to construct. The disk is 

formatted by a program that utilizes its knowledge of storage hierarchy structures and the 

storage hierarchy HAL interface to write these databases, SAT, and directory tables to 

disk before configuration interfaces are used. The specific data used to create the 

formatted test disk are described next, followed by a brief description of the programs 

that simulate a storage hierarchy configuration and LPSK interface user.  

1. Storage Medium Format  

Table 12 contains the configuration database values for the test storage hierarchy. 

The logical disk locations of various storage hierarchy data structures for the test scenario 

were chosen arbitrarily as storage hierarchy requirements do not describe the 

organization of data segments or meta-data on the storage medium. 
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Scenario Configuration Data 
Name  Value  Description 
SAT_offset  10  Offset from start of storage medium to SAT 
first_cluster_offset  266  Offset from start of storage medium to first cluster  
cluster_db_offset  9  Offset from start of storage medium to Cluster database  
cluster_size 8 Cluster size in number of 512-byte blocks 
SAT_size 256 The size of the SAT in number of 512-byte blocks 
SAT_records 32,768 The number of SAT rows 
max_children 128 The maximum number of child nodes per directory 

node 

Table 12.   Storage hierarchy test scenario configuration database data. 

The SAT begins at the tenth block of the virtual disk and spans 256 disk blocks. It 

contains a total of 32,768 rows. This SAT size is large enough to address a 128-megabyte 

storage medium space. The maximum number of child nodes is set to 128 nodes. 

Table 13 contains the cluster database values for the test storage hierarchy.  

Scenario Cluster Values 
Name  Value  Description 
total_clusters  32,768 Total number of clusters 
free_clusters  32,766 Free/Unallocated clusters  
dseg_clusters  0  Clusters allocated to data segments 
dir_clusters  2  Clusters allocated to directory tables 

Table 13.   Storage hierarchy test scenario cluster database values. 

The value for the total number of clusters matches the number of SAT rows from the 

configuration database, since each SAT row is mapped to a cluster. The free cluster value 

is two less, as two clusters are pre-allocated to the root directory node, which is always 

present in a storage hierarchy. The directory cluster value reflects the allocation of two 

directory clusters.  

Recall from Chapter III the directory table and directory table cluster information 

structures. The directory table cluster information structure, which is located on every 

cluster allocated for storage of directory tables, consumes 20 bytes. One row of a 

directory table structure consumes 48 bytes. The maximum number of directory table 
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rows per directory table cluster is found by subtracting the size of the directory table 

cluster information structure from the size of clusters in bytes, divided by the size of a 

directory table row: 

 

Given a four kilobyte cluster size, the maximum number of directory table rows per 

directory table cluster is 84.916̄ . The remainder is ignored to yield 84 directory table 

rows per directory table cluster. Two directory table clusters are required to store the 

meta-data in order to accommodate the maximum number of child nodes, 128, permitted 

by the configuration.  

The root directory table is constructed from two directory table structures. The 

first directory table’s cluster total number of records value is set to 84. The more clusters 

flag is set to indicate that another directory table cluster follows. The location of the next 

directory table cluster is set to SAT index one. The maximum records value is set to 128 

to indicate how many directory table rows are available for use across all directory table 

clusters of the chain. Each directory table row is initialized to null values and their 

statuses are set to NODE_TYPE_FREE to indicate they are available for usage. The 

directory structure is then written to disk using a HAL interface. The second directory 

table cluster is constructed and written to disk at the next cluster in the same way. The 

cluster directory more flag is unset to indicate no more directory clusters follow.  

The segment allocation table is constructed as an array of 32-bit unsigned integers 

of length equal to the number of SAT rows value stored in the configuration database, 

plus one. The extra integer contains a special value that is used by the SAT_init function 

of the SAT manager module to ensure the binary data is has retrieved from disk during 

initialization represents a SAT. The SAT array is written to disk using a HAL interface. 

2. Test Programs 

Two test programs simulate both a storage hierarchy configuration tool and the 

LPSK. The configuration interface test program uses configuration interfaces to create 
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and modify the storage hierarchy structure on disk, read and write data segments, 

compare data segment hash values, etc. The LPSK test program uses initialization and 

runtime interfaces to get handles for data segments created during configuration and 

perform a sequence of read and write operations, comparing expected hash values with 

those stored in meta-data. The test programs record the return value for each interface 

call and any unexpected results it encountered when reading and writing data segments. 

In addition, both test programs make use of the format function provided by the 

program that returns the test storage hierarchy’s storage medium to its original state. 

Each test program is produced by invoking the storage hierarchy make file with a 

specific argument. A make file contains the compiler and linker directives and is 

interpreted by the Make utility to invoke the tools necessary to produce machine-code 

binary files. Make is part of the GNU Compiler Collection [17]. The config_test 

argument instructs the Make program to compile and link the configuration test program 

with the storage hierarchy configuration interfaces. The configuration test program 

performs each configuration group autonomously and can also be directed to perform 

some of the storage hierarchy configuration tasks required by the LPSK test program. 

Figure 11 illustrates the hierarchical dependencies of the configuration test program  

 

Figure 11.   Configuration test program compiled with configuration interfaces and 
common components as a single monolithic executable. 
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The LPSK test program is produced by invoking the make file with the 

lpsk_test argument. The LPSK test program is linked with the storage hierarchy 

initialization and runtime interfaces, and performs the tests involving these interfaces. 

Figure 12 illustrates the hierarchical dependencies of the LPSK test program.  

The storage hierarchy interface calls that are performed by the test programs are 

reflected in each test group’s test procedure, found in Appendix B. Both test programs 

expect an argument with a value that corresponds to a specific test group, or a set of steps 

that make up part of a test group. When a test program is executed with a valid test 

instruction, it performs the test procedures associated with the specified test group and 

prints the results. To run the sh_c_make_dseg test procedure, for example, the 

configuration test program is first generated by invoking the storage hierarchy make file 

with argument test_config. The resulting executable file is then called with test 

group argument TEST_C2. Certain initialization and runtime interface test groups 

require that both test programs be called in sequence as described by the test procedure.  

 

Figure 12.   LPSK test program compiled with initialization and runtime interfaces and 
common components as a single monolithic executable. 



 46

B. EXTERNAL INTERFACE TESTING 

The storage hierarchy prototype external interfaces were tested through a series of 

“black-box” tests. Black-box testing relies on the documentation of the external interfaces 

to confirm whether or not they behave according to specification. Positive and negative 

tests are performed for each interface. Positive tests demonstrate that interfaces function 

correctly on valid input parameters. Negative tests demonstrate that the external 

interfaces return the expected error codes when invalid input or error states are 

encountered. The external interfaces are tested on the storage hierarchy-formatted virtual 

disk described in Section A. See Appendix B for the test plans used to produce the results 

that follow.  

Multiple tests were performed for each interface. Individual tests were labeled 

with a name and test type and are recorded in a table along with the relevant parameters 

supplied to the interface, the expected result of the interface, and a record of the observed 

behavior of the interface. Each test was performed independently of others except where 

indicated by the test naming scheme. Tests were named by their category (configuration, 

initialization, runtime), a unique test group number that distinguish different interfaces 

tests, and a sequence of capital letters that distinguished individual tests. When tests 

depend on and need to occur after previous tests, the capital letter remains the same and a 

sequentially increasing digit is affixed. For example, test C1A is the first test of a 

configuration interface, and test C2A is the first test of the next configuration interface. 

Whereas, tests labeled C1A.1 and C1A.2 imply that the results of the latter rely on the 

results of the former. 

Tests are categorized by their type, either positive or negative. Only interface 

parameters relevant to a specific test run are enumerated (See Appendix A for full list of 

external interface parameters). Parameters that are not meaningful for a specific test were 

omitted. In the case of positive tests, an interface return value indicating that no error has 

occurred is expected. Specific error codes are expected as the result of negative tests. 

Many interfaces that rely on previous storage hierarchy operations, i.e., the 

 

 



 47

sh_c_write_dseg interface cannot be tested for functional correctness unless a 

handle has been associated with a newly created data segment. Test prerequisites are 

described for these context-sensitive interfaces. 

1. Configuration Interface Testing 

Table 14 contains the results of test group 1, the 

sh_c_initialize_databases interface. The configuration database is located at 

block offset eight as described in Section A of this chapter.. Passing any other block 

offset value will cause the configuration database initialization function to fail. For test 

runs C1E and C1F, the block offset data stored in the configuration database was set to 

verify that the module correctly identifies the error.  

Table 15 contains the results of test group 2, the sh_c_make_dseg interface. 

These tests were performed after storage hierarchy databases and structures had been 

initialized. Table 16 contains the results of test group 3, sh_c_make_subtree 

interface. These tests were also performed after storage hierarchy initialization. A large 

data segment was created to consume all free clusters prior to test run C3C to generate 

the SH_C_DISKSPACE error code.  

Test group 4, the sh_c_open_dseg interface, requires the presence of data 

segments in order to perform meaningful functional tests. Table 17 contains the test 

results for this interface after the storage hierarchy was initialized and three data 

segments were created at paths “/1”, “/2”, and “/3”. The number of handle table rows in 

the configuration database was set to two during initialization to cause the 

SH_C_HANDLE_TABLE_FULL error code to be generated when sh_c_open_dseg is 

called for a third data segment. 
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Test group 1: sh_c_initialize_databases 
Test  Type  Parameters  Expected Result  Pass? Remarks 
C1A  Pos. block_offset: 8 No error, database structures loaded.   Pass Offset 8 is the correct value 
C1B  Neg. block_offset: 0 SH_C_CONFIG_DB_LOAD_ERR  Pass  
C1C Neg. block_offset: 8 SH_C_CLUS_DB_LOAD_ERR Pass Configuration database altered to 

reflect incorrect location of cluster 
database. 

C1D Neg. block_offset: 8 SH_C_SAT_LOAD_ERR Pass Configuration database altered to 
reflect incorrect location of SAT 

Table 14.   Test group 1: sh_c_initilizase_databases. 
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Test group 2: sh_c_make_dseg 
Test  Type  Parameters  Expected Result  Pass? Remarks 
C2A.1  Pos. path: “/”  

node: 0 
size: 9000 

No error, data segment created Pass Data segment node at path “/0” 
created. 

C2A.2  Neg. path: “/”  
node: 0 

SH_C_NODE_ALREADY_EXISTS Pass Duplicate data segment node 
from test C2A.1 detected. 

C2B  Neg. path: “/”  
node: 128 

SH_C_MAX_NODE_NAME Pass Specified node name exceeds 
configured maximum of 128 
nodes. 

C2C  Neg. path: “/”  
node: 0 
size: 134217728 

SH_C_DISKSPACE Pass Data segment size exceeds 
available clusters. 

C2D Neg. path: “a” SH_C_MALFORMED_PATH Pass Input path is malformed. 
C2E Neg. path: “/a” SH_C_MALFORMED_PATH Pass Input path is malformed. 
C2F  Neg. path: “/0” SH_C_PATH_ERROR  Pass Input “/0” is not a valid path. 

Table 15.   Test group 2: sh_c_make_dseg. 
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Test group 3: sh_c_make_subtree 
Test  Type  Parameters  Expected Result  Pass? Remarks 
C3A.1  Pos. path: “/”  

node: 0 
No error, directory table created Pass  

C3A.2  Neg. path: “/”  
node: 0 

SH_C_NODE_ALREADY_EXISTS Pass Duplicate directory table node 
detected. 

C3B  Neg. path: “/”  
node: 128 

SH_C_MAX_NODE_NAME Pass Specified node name exceeds 
configured max of 128 nodes. 

C3C  Neg. path: “/”  
node: 0 

SH_C_DISKSPACE Pass Available disk space consumed 
prior to this test. 

C3D Neg. path: “a” SH_C_MALFORMED_PATH Pass Input path is malformed. 
C3E Neg. path: “/a” SH_C_MALFORMED_PATH Pass Input path is malformed. 
C3F  Neg. path: “/0” SH_C_PATH_ERROR  Pass Input “/0” is not a valid path. 

Table 16.   Test group 3: sh_c_make_subtree. 
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Test group 4: sh_c_open_dseg 
Test  Type  Parameters  Expected Result  Pass? Remarks 
C4A.1  Pos. path: “/”  

node: 1 
No error, handle zero returned. Pass /1 was created prior to this test 

C4A.2  Pos. path: “/”  
node: 2 

No error, handle one returned. Pass /2 was created prior to this test 

C4A.3  Neg. path: “/”  
node: 3 

SH_C_HANDLE_TABLE_FULL Pass All handles were consumed 
prior to this test. 

C4B Neg. path: “/” 
node: 10 

SH_C_NO_SUCH_NODE Pass No node exists at path “/10” 

C4C Neg. path: “a” SH_C_MALFORMED_PATH Pass Input path is malformed. 
C4D Neg. path: “/a” SH_C_MALFORMED_PATH Pass Input path is malformed. 
C4E  Neg. path: “/0” SH_C_PATH_ERROR  Pass Path does not exist 

Table 17.   Test group 4: sh_c_open_dseg. 
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Table 18 contains the results for test group 5, the sh_c_write_dseg interface. 

Two data segments of size 9,000 bytes were created and associated with handles. Two 

buffers, the first containing 9,000 bytes of pre-generated binary data, and the second 

containing 9,000 bytes of different pre-generated binary data, were created in the memory 

of the test system. Hashes were generated for each buffer, using the same technique used 

to generate the MAC for data segments in the storage hierarchy.  The 

sh_c_write_dseg interface was then called on the first data segment handle to write 

the entirety of the first buffer to the data segment. The second data segment handle was 

written in two halves from the second 9,000 byte buffer. This tested the offset and byte 

count parameters that allow the interface caller to write the specified number of bytes at 

the specified byte offset in the data segment. 

Table 19 contains the results for test group 6, the sh_c_read_dseg interface.  

Tests C6A and C6B from this group are performed immediately after the corresponding 

tests C5A and C5B in test group 5. The contents of the two data segments that were 

previously written are read into buffers by the sh_c_read_dseg interface. New 

hashes are generated based on the contents of these buffers and compared to the hash 

values generated by the sh_c_write_dseg test group. By that showing these hash 

values are equivalent, the sh_c_read_dseg interface is shown to correctly read the 

contents of the correct data segments. 

Table 20 contains the results for test group 7, the sh_c_close_dseg interface. 

Test C7A uses the data segment opened and written from test C5A. When a data segment 

is closed, the hash value of its contents is generated and stored. The generated hash is 

compared to the hash value generated in test group 5 and found to be equivalent, 

demonstrating that sh_c_close_dseg correctly generates the hash of the data 

segment associated with the specified handle. 

Table 21 contains the results for test group 8, the sh_c_delete_dseg 

interface. A data segment at path “/1” and a directory table at path “/2” were created for 

this test. The interface was tested by calling it to remove the data segment.  
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Test group 5: sh_c_write_dseg 
Test  Type  Parameters  Expected Result  Pass? Remarks 
C5A  Pos. handle: 0 

buffer: buf_ptr1 
byte_count: 9000 
offset: 0 

No error. Pass All 9,000 bytes of buf_ptr1 is 
written to the data segment 

C5B.1  Pos. handle: 1 
buffer: buf_ptr2 
byte_count: 4500  
offset: 0 

No error. Pass 4,500 bytes from buf_ptr2 is 
written to the beginning of the 
data segment 

C5B.2  Pos. handle: 1 
buffer: buf_ptr2 
byte_count: 4500  
offset: 4500 

No error. Pass 4,500 bytes from buf_ptr2 is 
written to the data segment 
beginning at byte offset 4,500. 

C5C Neg. handle: 2 SH_C_HANDLE_INVALID Pass Bad handle passed as a 
parameter. 

C5D Neg. handle: 0 
buffer: buf_ptr1 
byte_count: 9000 
offset: 9200 

SH_C_DSEG_OFFSET_BOUND Pass The supplied offset parameter is 
outside the bounds of the 9,000 
byte data segment. 

C5E Neg. handle: 0 
buffer: buf_ptr1 
byte_count: 8000 
offset: 2000 

SH_C_INSUFFICENT_SPACE Pass The specified byte count 8,000 
cannot be written within the 
bounds of 9,000 – 2,000 bytes. 

C5F  Neg. handle: 0 
buffer: NULL 

SH_C_INPUT_BUFF_NULL  Pass Input buffer is null. 

Table 18.   Test group 5: sh_c_write_dseg. 
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Test group 6: sh_c_read_dseg 

Test  Type  Parameters  Expected Result  Pass? Remarks 
C6A  Pos. handle: 0 

buffer: buf_ptr1 
byte_count: 9000 
offset: 0 

No error. Pass All 9,000 bytes of the data 
segment is read into buf_ptr1. 
Performed after C5A. 

C6B.1  Pos. handle: 1 
buffer: buf_ptr2 
byte_count: 4500  
offset: 0 

No error. Pass The first half of the data 
segment is read into buf_ptr2. 
Performed after C5B.1 

C6B.2  Pos. handle: 1 
buffer: buf_ptr2 
byte_count: 4500  
offset: 4500 

No error. Pass The second half of the data 
segment beginning at byte offset 
4,500 is read into buf_ptr2. 
Performed after C5B.2 

C6C Neg. handle: 2 SH_C_HANDLE_INVALID Pass Bad handle passed as a 
parameter. 

C6D Neg. handle: 0 
buffer: buf_ptr1 
byte_count: 9000 
offset: 9200 

SH_C_OFFSET_BOUND_ERROR Pass The supplied offset parameter is 
outside the bounds of the 9,000 
byte data segment. 

C6E  Neg. handle: 0 
buffer: NULL 

SH_C_OUTPUT_BUFF_NULL  Pass Output buffer is null. 

Table 19.   Test group 6: sh_c_read_dseg.  
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Test group 7: sh_c_close_dseg 

Test  Type  Parameters  Expected Result  Pass? Remarks 
C7A.1  Pos. handle: 0 No error, hash value generated and stored   Pass Performed after C5A. 
C7A.2  Neg. handle: 0 SH_C_HANDLE_INVALID  Pass Handle was already closed in 

test C7A.1. 
C7B Neg. handle: 2 SH_C_HANDLE_INVALID Pass Bad handle passed. 

Table 20.   Test group 7: sh_c_close_dseg. 

Test group 8: sh_c_delete_dseg 
Test  Type  Parameters  Expected Result  Pass? Remarks 
C8A.1  Pos. path: “/”  

node: 1 
No error, data segment deleted Pass /1 dseg was created prior to this 

test. 
C8A.2  Neg. path: “/”  

node: 1 
SH_C_NO_SUCH_NODE Pass Data segment was already 

deleted. 
C8B  Neg. path: “/”  

node: 128 
SH_C_MAX_NODE_NAME Pass Specified node name exceeds 

configured maximum of 128 
nodes. 

C8C  Neg. path: “/”  
node: 0 

SH_C_NO_SUCH_NODE Pass  

C8D Neg. path: “/” 
node: 2 

SH_C_NODE_NOT_DSEG Pass /2 directory was created prior to 
this test. 

C8E Neg. path: “a” SH_C_MALFORMED_PATH Pass Input path is malformed. 
C8F Neg. path: “/a” SH_C_MALFORMED_PATH Pass Input path is malformed. 
C8G  Neg. path: “/0” SH_C_PATH_ERROR  Pass Path does not exist 

Table 21.   Test group 8: sh_c_delete_dseg.
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Table 22 contains the results for test group 9, the sh_c_delete_subtree 

interface. A simple tree structure was constructed to test the interface’s ability to descend 

and remove data segment and directory table nodes from the specified parent node. Three 

directory table nodes with paths “/1”, “/1/1”, and “/1/2” were created along with two data 

segment nodes at paths “/1/1/1” and “/1/2/1”.  

Table 23 contains the results for test group 10, the sh_c_get_child interface. 

The tree structure constructed for test group 9 was also used for testing this interface’s 

functionality.  

Table 24 contains the results for test group 11, the sh_c_get_dseg_size 

interface. A data segment of size 9,000 bytes and path “/1” and a directory table node of 

path “/2” were created prior to testing. Table 25 contains the results fpr test group 12, the 

sh_c_get_dseg_hash interface. A data segment of size 9,000 bytes and path “/1” 

was created, opened, and written to with 9,000 bytes of pre-generated binary data. The 

hash of the data segment contents were calculated and stored in the test program. The 

data segment was then closed. A directory node of path “/2” was also created for negative 

testing purposes. The sh_c_get_dseg_hash interface was called and returned an 

equivalent hash, demonstrating the interface retrieved the correct hash value. 

Table 26 contains the results for test group 13, the sh_c_check_hash 

interface. A data segment of size 9,000 bytes and path “/1” was created, opened, and 

written to with 9,000 bytes of pre-generated binary data. The data segment was then 

closed. A directory node of path “/2” was also created for negative testing purposes. 
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Test group 9: sh_c_delete_subtree 
Test  Type  Parameters  Expected Result  Pass? Remarks 
C9A Neg. path: “/1/1” 

node: 1 
SH_C_NODE_NOT_DIRNODE Pass The specified node was a data 

segment. 
C9B.1  Pos. path: “/”  

node: 1 
No error, directory and child nodes deleted. Pass A hierarchy off of /1 was 

created prior to this test. 
C9B.2  Neg. path: “/”  

node: 1 
SH_C_NO_SUCH_NODE Pass Directory table node was 

already deleted. 
C9B.3  Neg. path: “/1”  

node: 1 
SH_C_PATH_ERROR Pass This path no longer exists 

because parent node was deleted 
in test C9A.1 

C9C  Neg. path: “/”  
node: 128 

SH_C_MAX_NODE_NAME Pass Node name exceeds configured 
maximum of 128 nodes. 

C9D  Neg. path: “/”  
node: 0 

SH_C_NO_SUCH_NODE Pass No node exists at path “/0” 

C9E Neg. path: “a” SH_C_MALFORMED_PATH Pass Input path is malformed. 
C9F Neg. path: “/a” SH_C_MALFORMED_PATH Pass Input path is malformed. 
C9G  Neg. path: “/0” SH_C_PATH_ERROR  Pass Path does not exist 

Table 22.   Test group 9: sh_c_delete_subtree. 
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Test group 10: sh_c_get_child 

Test  Type  Parameters  Expected Result  Pass? Remarks 
C10A  Pos. path: “/”  

node: 1 
offset: 0 

No error, node name and directory node type 
returned for node at path “/1/1” 

Pass  

C10B  Pos. path: “/”  
node: 1 
offset: 1 

No error, node name and directory node type 
returned for node at path “/1/2” 

Pass  

C10C Neg. path: “/” 
node: 1 
offset: 2 

SH_C_OFFSET_BOUND_ERROR Pass  

C10D  Pos. path: “/1”  
node: 1 
offset: 0 

No error, node name and data segment node 
type returned for node at path “/1/1/1” 

Pass  

C10E  Neg. path: “/1/1”  
node: 1 

SH_C_NODE_NOT_DSEG Pass The specified node is a data 
segment. 

C10F  Neg. path: “/”  
node: 128 

SH_C_MAX_NODE_NAME Pass Node name exceeds configured 
maximum of 128 nodes. 

C10G  Neg. path: “/”  
node: 0 

SH_C_NO_SUCH_NODE Pass No node exists at path “/0” 

C10H Neg. path: “a” SH_C_MALFORMED_PATH Pass Input path is malformed. 
C10I Neg. path: “/a” SH_C_MALFORMED_PATH Pass Input path is malformed. 
C10J  Neg. path: “/0” SH_C_PATH_ERROR  Pass Path does not exist 

Table 23.   Test group 10: sh_c_get_child. 
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Test group 11: sh_c_get_dseg_size 
Test  Type  Parameters  Expected Result  Pass? Remarks 
C11A  Pos. path: “/”  

node: 1 
No error, data segment size returned Pass /1 dseg created prior to this test. 

C11B  Neg. path: “/”  
node: 2 

SH_C_NODE_NOT_DSEG Pass /2 was created as a directory 
node prior to this test. 

C11C  Neg. path: “/”  
node: 3 

SH_C_NO_SUCH_NODE Pass No node exists at path “/3” 

C11D  Neg. path: “/”  
node: 128 

SH_C_MAX_NODE_NAME Pass Node name exceeds configured 
maximum of 128 nodes. 

C11E Neg. path: “a” SH_C_MALFORMED_PATH Pass Input path is malformed. 
C11F Neg. path: “/a” SH_C_MALFORMED_PATH Pass Input path is malformed. 
C11G  Neg. path: “/0” SH_C_PATH_ERROR  Pass Path does not exist 

Table 24.   Test group 11: sh_c_get_dseg_size. 
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Test group 12: sh_c_get_dseg_hash 
Test  Type  Parameters  Expected Result  Pass? Remarks 
C12A  Pos. path: “/”  

node: 1 
No error, data segment hash returned Pass /1 dseg was created prior to this 

test. 
C12B  Neg. path: “/”  

node: 2 
SH_C_NODE_NOT_DSEG Pass /2 was created as a directory 

node prior to this test. 
C12C  Neg. path: “/”  

node: 3 
SH_C_NO_SUCH_NODE Pass No node exists at path “/3” 

C12D  Neg. path: “/”  
node: 128 

SH_C_MAX_NODE_NAME Pass Node name exceeds configured 
maximum of 128 nodes. 

C12E Neg. path: “a” SH_C_MALFORMED_PATH Pass Input path is malformed. 
C12F Neg. path: “/a” SH_C_MALFORMED_PATH Pass Input path is malformed. 
C12G  Neg. path: “/0” SH_C_PATH_ERROR  Pass Path does not exist 

Table 25.   Test group 12: sh_c_get_dseg_hash. 
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Test group 13: sh_c_check_hash 
Test  Type  Parameters  Expected Result  Pass? Remarks 
C13A  Pos. path: “/”  

node: 1 
No error, true value returned Pass /1 dseg was created prior to this 

test 
C13B  Neg. path: “/”  

node: 2 
SH_C_NODE_NOT_DSEG Pass /2 was created as a directory 

node prior to this test. 
C13C  Neg. path: “/”  

node: 3 
SH_C_NO_SUCH_NODE Pass No node exists at path “/3” 

C13D  Neg. path: “/”  
node: 128 

SH_C_MAX_NODE_NAME Pass Node name exceeds configured 
maximum of 128 nodes. 

C13E Neg. path: “a” SH_C_MALFORMED_PATH Pass Input path is malformed. 
C13F Neg. path: “/a” SH_C_MALFORMED_PATH Pass Input path is malformed. 
C13G  Neg. path: “/0” SH_C_PATH_ERROR  Pass Path does not exist 

Table 26.   Test group 13: sh_c_check_hash. 
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2. Initialization Interface Testing 

Initialization interface testing is only fully informative if it occurs after data 

segment and directory nodes have already been created. All tests were performed after 

the test storage hierarchy was modified as described for each group. 

Table 27 contains the results for test group 1, the 

sh_i_initialize_databases interface. Table 28 contains the results for test 

group 2, the sh_i_get_handle interface. The storage hierarchy was initialized with a 

handle table size of one row and two data segment of paths “/1” and “/2” were created 

prior to this test. A directory table node was also created at path “/3”. Table 29 contains 

the results for test group 3, the sh_i_read_in interface. A data segment at size 9,000 

bytes and path “/1” was created, opened, and written to with 9,000 bytes of pre-generated 

data using configuration interfaces prior to this test. The interface was called and the 

expected data was loaded into a test program buffer. 

Table 30 contains the results for test group 4, the sh_i_get_dseg_size 

interface. A data segment of size 9,000 bytes and path “/1” was created prior to testing. 

Table 31 contains the results for test group 5, the sh_i_get_dseg_hash interface. A 

data segment of size 9,000 bytes and path “/1” was created, opened, and written to with 

9,000 bytes of pre-generated binary data using configuration interfaces. The hash of the 

data segment contents were calculated and stored in the test program. The data segment 

was then closed. A directory node at path “/2” was also created for negative testing 

purposes. The sh_i_get_dseg_hash interface was called and returned the same hash 

value, demonstrating the interface retrieved the correct hash value. 
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Test group 1: sh_i_initialize_databases 
Test  Type  Parameters  Expected Result  Pass? Remarks 
I1A  Pos. block_offset: 8 No error, database structures loaded.   Pass Offset 8 is the correct value 
I1B  Neg. block_offset: 0 SH_C_CONFIG_DB_LOAD_ERR  Pass  
I14C Neg. block_offset: 8 SH_C_CLUS_DB_LOAD_ERR Pass Configuration database altered to 

reflect incorrect location of cluster 
database. 

I1D Neg. block_offset: 8 SH_C_SAT_LOAD_ERR Pass Configuration database altered to 
reflect incorrect location of SAT 

Table 27.   Test group 1: sh_i_initilizase_databases. 
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Test group 2: sh_i_get_handle 
Test  Type  Parameters  Expected Result  Pass? Remarks 
I2A.1  Pos. path: “/”  

node: 1 
No error, handle zero returned. Pass /1 dseg was created prior to this 

test. 
I2A.2  Neg. path: “/”  

node: 2 
SH_C_HANDLE_TABLE_FULL Pass All handles were consumed 

prior to this test. 
I2B  Neg. path: “/”  

node: 3 
SH_C_NODE_NOT_DSEG Pass /3 directory node was created 

prior to this test. 
I2C Neg. path: “/” 

node: 10 
SH_C_NO_SUCH_NODE Pass No node exists at path “/10” 

I2D Neg. path: “/”  
node: 128 

SH_C_MAX_NODE_NAME Pass Node name exceeds configured 
maximum of 128 nodes. 

I2E Neg. path: “a” SH_C_MALFORMED_PATH Pass Input path is malformed. 
I2F Neg. path: “/a” SH_C_MALFORMED_PATH Pass Input path is malformed. 
I2G  Neg. path: “/0” SH_C_PATH_ERROR  Pass Path does not exist 

Table 28.   Test group 2: sh_i_get_handle. 
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Test group 3: sh_i_read_in 

Test  Type  Parameters  Expected Result  Pass? Remarks 
I3A  Pos. handle: 0 

buffer: buf_ptr1 
No error, data read in from data segment. Pass A valid handle was obtained 

prior to this test. 
I3B Neg. handle: 1 SH_C_HANDLE_INVALID Pass Bad handle passed. 

Table 29.   Test group 3: sh_i_read_in.  

Test group 4: sh_i_get_dseg_size 
Test  Type  Parameters  Expected Result  Pass? Remarks 
I4A  Pos. handle: 0 No error, data segment size returned Pass A valid handle was obtained 

prior to this test. 
I4B  Neg. handle: 1 SH_C_HANDLE_INVALID Pass Bad handle passed. 

Table 30.   Test group 4: sh_i_get_dseg_size. 

Test group 5: sh_i_get_dseg_hash 
Test  Type  Parameters  Expected Result  Pass? Remarks 
I5A  Pos. handle: 0 No error, data segment hash returned Pass A valid handle was obtained 

prior to this test. 
I5B  Neg. handle: 1 SH_C_HANDLE_INVALID Pass Bad handle passed. 

Table 31.   Test group 5: sh_i_get_dseg_hash. 



 66

3. Runtime Interface Testing 

Storage hierarchy runtime interfaces must be called after the handle table database 

has been initialized and handles have been associated with data segments. Each runtime 

interface test group is performed after these interfaces have been called and one data 

segment with handle zero is has been retrieved by the sh_i_get_handle interface 

call. This data segment is of size 9,000 bytes and contains pre-generated binary data. The 

test program calculates and stores the hash value of this data for future comparison.  

Table 32 contains the results for test group 1, the sh_r_read_in interface. The 

interface is called using a handle value of 0 and stores the data read from the data 

segment in a test program memory buffer. Table 33 contains the results for test group 2, 

the sh_r_write_out interface, which is performed immediately after test group 1. 

The test program modifies the 9,000 byte buffer in memory, calculates the new hash 

value, and calls the interface to write the data back to the data segment. Table 34 contains 

the results for test group 3, the sh_r_get_dseg_hash interface. This test is 

performed immediately after test group 2, and returns the hash generated by the 

sh_r_write_out interface. This hash is compared with the hash generated by the test 

program in test group 2. By demonstrating that the two hashes are equal, both 

sh_r_write_out and sh_r_get_dseg_hash interfaces are shown to function 

correctly. The sh_r_write_out interface generates the correct hash value, which is 

returned by calling the sh_r_get_dseg_hash interface. 

Table 35 contains the results for test group 4, the sh_r_get_dseg_size 

interface. Table 36 contains the results for test group 5, the sh_r_check_hash 

interface. A data segment of size 9,000 bytes and path “/1” was created, opened, and 

written to with 9,000 bytes of pre-generated binary data. The data segment was then 

closed.  
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Test group 1: sh_r_read_in 
Test  Type  Parameters  Expected Result  Pass? Remarks 
R1A  Pos. handle: 0 

buffer: buf_ptr1 
No error, data read in from data segment. Pass A valid handle was obtained 

prior to this test. 
R1B Neg. handle: 1 SH_C_HANDLE_INVALID Pass Bad handle passed. 

Table 32.   Test group 1: sh_r_read_in.  

Test group 2: sh_r_write_out 
Test  Type  Parameters  Expected Result  Pass? Remarks 
R2A  Pos. handle: 0 

buffer: buf_ptr1 
No error, data written to data segment and 
new hash is generated. 

Pass A valid handle was obtained 
prior to this test. 

R2B Neg. handle: 1 SH_C_HANDLE_INVALID Pass Bad handle passed. 

Table 33.   Test group 2: sh_r_write_out.  

Test group 3: sh_r_get_dseg_hash 
Test  Type  Parameters  Expected Result  Pass? Remarks 
R3A  Pos. handle: 0 No error, data segment hash returned Pass A valid handle was obtained 

prior to this test. 
R3B  Neg. handle: 1 SH_C_HANDLE_INVALID Pass Bad handle passed. 

Table 34.   Test group 3: sh_r_get_dseg_hash. 
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Test group 4: sh_r_get_dseg_size 
Test  Type  Parameters  Expected Result  Pass? Remarks 
R4A  Pos. handle: 0 No error, data segment size returned Pass A valid handle was obtained 

prior to this test. 
R4B  Neg. handle: 1 SH_C_HANDLE_INVALID Pass Bad handle passed. 

Table 35.   Test group 4: sh_r_get_dseg_size. 

Test group 5: sh_r_check_hash 
Test  Type  Parameters  Expected Result  Pass? Remarks 
R5A  Pos. handle: 0 No error, true value returned Pass A valid handle was obtained 

prior to this test. 
R5B  Neg. handle: 1 SH_C_HANDLE_INVALID Pass Bad handle passed. 

Table 36.   Test group 5: sh_r_check_hash. 
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C. SUMMARY 

This chapter presented a storage hierarchy scenario and the results of tests 

performed on each external interface. The procedures for recreating these test results are 

contained in Appendix B. Chapter V discusses the results of this study, related work, and 

suggests future work to improve upon the results of this thesis. 
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V. RESULTS 

The storage hierarchy prototype developed in this thesis is a near-complete 

implementation of the LPSK product functional specification for secondary storage of 

data segments [15]. The design and development of the prototype has shown that 

requirements can be derived from this specification for secondary storage of data 

segments, leading to the design, implementation, and successful testing of a storage 

hierarchy prototype. The prototype presents interfaces that can be used to construct a 

storage hierarchy structure on storage media for which a hardware abstraction layer has 

been provided. The prototype contains modules that are used for off-line configuration 

and both LPSK initialization and runtime operation modes to access the contents of data 

segments. The prototype is capable of maintaining configuration and data segment 

permanence by saving its configuration databases to secondary storage and loading the 

configuration databases at some later time. This storage hierarchy prototype, however, is 

not suitable for inclusion in the LPSK binary due to several incomplete features and a 

prototype design choice. These issues are discussed in this chapter. The chapter starts 

with a discussion of several problems and challenges encountered in this study and 

continues with a presentation of incomplete features of the storage hierarchy prototype, 

related work, and suggestions for future work related to the LPSK storage hierarchy. 

A. PROBLEMS ENCOUNTERED 

1. Hardware Abstraction 

The first challenge encountered was the lack of LPSK disk device driver software. 

This driver software facilitates the reading and writing of data between programs and a 

particular secondary storage device, such as a hard disk drive. Without this software 

layer, many aspects of the storage hierarchy prototype that rely on storing and modifying 

configuration information could not be tested directly on the LPSK and shown to 

function correctly. The solution to this problem was to design a hardware abstraction 

layer to hide the complexity of reading and writing to disk from the storage hierarchy 
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interfaces. The linux dd command-line tool was used by a HAL developed in this thesis 

to read and write data to a virtual disk, as described in the implementation methodology 

found in Chapter III. 

2. Memory Allocation 

Another challenge was the lack of the complete set of standard C library functions 

on the LPSK platform. Program developers rely on C libraries to perform oftentimes 

complex programming tasks quickly and easily, such as reserving primary memory or 

working with C strings. Implementation of functions that were necessary for storage 

hierarchy modules but had not been implemented for the LPSK added to the overall 

programming workload. This challenge led to an additional problem regarding memory 

allocation.  

The handle table and SAT databases vary in size based on the configuration of 

storage hierarchy. Primary memory is reserved for these databases dynamically during 

their initialization. In the context of the configuration interfaces, this can be accomplished 

by the C standard library call malloc, which returns a pointer to a primary memory data 

segment of the specified size. This library call interacts with the operating system’s 

memory manager to reserve this memory.  A comparable library call does not exist in the 

LPSK platform. The LPSK memory model is also fundamentally dissimilar to the 

memory model of the Linux testing workstation. Because all aspects of the storage 

hierarchy were tested on a Linux platform, it was necessary to substitute portions of code 

that would have otherwise interacted with the LPSK memory manager with calls to the C 

standard library malloc Dynamic memory allocation was also avoided in situations 

where it might otherwise have led to more streamlined and elegant code. 

3. File System Analogy 

This study often relied on the similarities found in the functional specification for 

the secondary storage of LPSK data segments and the structure of contemporary file 

systems. The storage hierarchy organizes data segments in a tree-like hierarchal fashion. 

This is similar to the way file systems such as Microsoft Corporation’s FAT file system 
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or the Linux “ext3” file system organize files in a hierarchal directory-tree structure. The 

contemporary file system analogy was attractive because of the way it framed the 

discussion of the requirements and design of the storage hierarchy prototype in context 

likely to be familiar to readers. This approach of treating the storage hierarchy like a 

specialized file system, however, influenced the design of the storage hierarchy prototype 

in such a way that the design was no longer congruent to the functional specification. It 

was assumed that an inner node—a node that has child nodes—could not also be a data 

segment. While the LPSK functional specification does not explicitly require that inner 

nodes may represent data segments, the assumption arrived at in the design of this storage 

hierarchy prototype does not allow such dual-purpose nodes. As a result, the storage 

hierarchy prototype developed in this thesis may not be said to be a complete or fully 

accurate LPSK storage hierarchy implementation, depending on the interpretation of the 

functional specification. Significant modification of the storage hierarchy prototytpe 

would be required to allow inner nodes to contain data.. 

B. INCOMPLETE FEATURES 

Several features of the LPSK storage hierarchy prototype are incomplete due to a 

lack of documented requirements or incomplete features of the LPSK itself. The 

prototype is not capable of making the LPSK system calls necessary to reserve 

dynamically-sized segments of primary memory. This functionality must be added to the 

prototype to make it capable of executing as part of the LPSK binary.  

Many initialization and runtime interfaces are required to cause the LPSK 

platform to halt on certain error cases. Comment lines are included in storage hierarchy 

module files indicating where the system calls to make the kernel halt are to be inserted. 

Another incomplete feature involves data segment MAC generation. The external 

interface specification developed in this thesis does not include parameters that allow the 

interface caller to supply the key used to generate a data segment MAC. Instead, the 

storage hierarchy prototype makes use of a SHA-256 hash implementation to generate a 

collision-free substitution MAC used for testing the storage hierarchy external interfaces. 
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The prototype can be modified to accept MAC keys through the external interfaces in 

both LPSK and non-LPSK contexts, or in the case of LPSK context interfaces, code can 

be added to access the primary memory location of the MAC key.  

C. RELATED WORK 

This section presents several related data and file storage systems. 

Security Enhanced Linux (SELinux) is a joint effort between the National 

Security Agency (NSA) and the Linux community to implement a variety of mandatory 

access control policies for the Linux operating system [19]. It associates security labels 

with file system objects and users, and mediates access to files in the Linux file system 

based on SELinux security policies. SELinux policies separate information based on 

confidentiality and integrity labels. SELinux components must be built into and compiled 

with the Linux kernel in order to enforce its policies. Since SELinux functionality is 

bolted on to the Linux kernel, which is not a high assurance operating system, it does not 

meet the high assurance objectives of the LPSK. 

The XTS-400 Trusted Computer System is a commercial high assurance 

computing platform combining evaluated hardware and the STOP operating system [20]. 

XTS-400 systems host and separate users and information of various sensitivity levels 

and stores data in a hierarchical file system. It has been successfully evaluated at EAL5+ 

[21] 

The Gemini Trusted Network Processor (GTNP), a product of Gemini Computers, 

Inc., implements a specialized storage mechanism for the secondary storage of its data 

segments [22]. A GTNP data segment is a variable sized unit of storage that can be 

swapped in and out of primary memory to some secondary store by a segment storage 

system. All GTNP processes to which a GTNP data segment has made known modify the 

same segment in primary memory. Neither the STOP OS nor the GTNP are separation 

kernels and reflect an architectural approach different than that of the LPSK. 
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Like the LPSK, GTNP data segments are logically organized in a hieratical 

fashion. Every node of the hierarchy can simultaneously contain data and have a number 

of child nodes. Data segments are made known to processes by exporting a path to a 

subtree. If there is a hierarchy of GTNP data segments labeled 5-6-9-10, for example, and 

the path 5-6 is exported to a process, then data segments 9 and 10 have been made known 

to the process. The process is unaware of any data segments above this subtree.   

D. FUTURE WORK 

This section presents suggestions for future work that can be used to improve the 

storage hierarchy prototype developed in this thesis.  

1. Performance and Optimization  

The main factor influencing the performance of the storage hierarchy external 

interfaces, in terms of execution time, is storage medium access. Interfaces access to the 

storage medium through the HAL. Every interface accesses the storage medium to some 

varying degree, with some interfaces performing ten or more discrete disk access events. 

As interfaces traverse the tree structure of particularly deep storage hierarchy trees, the 

number of discrete accesses can rapidly increase. One optimization that could be 

employed to reduce the amount of execution time spent waiting for disk accesses to 

complete is to cache the commonly accessed disk sectors.  

Directory table clusters are read from the storage medium by any interface that 

takes a storage hierarchy path as a parameter. These directory tables are loaded into 

memory and are searched for the SAT index of the next directory table of the path, which 

is then loaded into memory, until the entire path has been traversed by this cycle of 

directory table reference. The principle of temporal locality [23] suggests that if a 

directory table has been recently accessed, it will be accessed again in the near future. 

During configuration, for example, after the interface call has been made to create a 

directory table at a given path, it is likely that future interface calls will use the same path 

to populate the newly created directory table with child data segment and directory table 

nodes.  A directory table caching module would reduce the execution time of many 
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interfaces by caching directory table structures in memory and intercepting calls to the 

HAL to load a directory table if it already exists in the cache. 

Each storage hierarchy configuration interface acts as an atomic operation. Any 

modifications that are made to the SAT, directory tables, or cluster database are 

immediately committed to the storage medium by the HAL. While this behavior has 

positive attributes—a storage hierarchy remains in a valid state if a configuration tool 

unexpectedly ends execution—it also has some negative performance attributes in that 

the storage medium is accessed often. A configuration interface and supporting module 

could be added to the prototype that only commits the modified databases to the storage 

medium after the configuration tool user has decided to end a configuration session. This 

feature would reduce the amount of storage medium access during configuration. 

2. Formatting Tool 

A storage hierarchy’s storage medium must be formatted with information about 

the configuration and dimensions of the storage hierarchy before configuration interfaces 

may be used. This was accomplished during testing of the storage hierarchy external 

interfaces by a C program that created and populated the basic storage hierarchy 

structures in memory and then invoked the HAL to commit these structures to the disk. 

Chapter IV contains a description of how this was accomplished by the test program. The 

test program, however, relied on hard-coded values when formatting the storage medium. 

Configuration interfaces could be added to the storage hierarchy prototype that would 

allow a configuration tool to format a storage medium using the parameters it specifies. 

E. CONCLUSION 

The storage hierarchy prototype was designed and implemented to meet the 

requirements derived from the LPSK product functional specification for the secondary 

storage of data segments. While the prototype is not a wholly accurate implementation, 

its development has increased the attention paid to this aspect of the LPSK and has 

generated documentation and C code that can be used to further the goals of the TCX 

project. This study began with the analysis of the LPSK functional specifications and 

continued with the creation of an external interface specification document which 
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demarcated the boundary between the storage hierarchy and the rest of the LPSK (see 

Appendix A). Development began after internal databases and modules of the storage 

hierarchy had been identified. Development was followed by a series of tests and 

prototype corrections to confirm the positive and negative behaviors of the external 

interfaces conformed to the external interface specification. 
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APPENDIX A: LPSK STORAGE HIEARCHY INTERFACES 

This appendix outlines the external interfaces of the storage hierarchy. Interfaces 

are groups of configuration, initialization, and runtime functions and are detailed in 

separate sections. Constants referenced in the following sections are defined in the 

respective header files of each function group. Functions return a success code 

NO_ERROR if the function call is successful.  

For the purposes of Appendix A, primitive variables referred to as int (integer) are 

of 32-bit length.  
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A. CONFIGURATION INTERFACE 

This section describes the functions used to configure the storage hierarchy 

executing in a non-LPSK context. The functions are implemented and executed on a 

system that has access to the C programming language standard libraries, including 

standard input/output. The functions are exposed to a configuration tool as a series of 

function calls. They are: 

• sh_c_initialize_databases 

• sh_c_make_dseg 

• sh_c_make_subtree 

• sh_c_open_dseg 

• sh_c_write_dseg 

• sh_c_close_dseg 

• sh_c_delete_dseg 

• sh_c_delete_subtree 

• sh_c_get_child 

• sh_c_get_dseg_size 

• sh_c_get_dseg_hash 

• sh_c_read_dseg 

• sh_c_check_hash 

The following subsection details these functions. 
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1. sh_c_initialize_databases 

This function reads the storage hierarchy configuration from disk into memory.  

1.1 Prototype 
unsigned int sh_c_initialize_databases 

const unsigned int offset); 
 

1.2 Inputs 
• offset 

The disk block offset into the storage medium where the storage 
hierarchy configuration data is located. 
 

1.3 Outputs 
• Function Result 

A numerical value that indicates success or failure of the function. 
 

1.4 Processing 
1. Attempt to load the configuration database into memory from disk at 

input offset. If a configuration database is not found, return 
SH_C_CONFIG_DB_LOAD_ERR error. If memory can not be 
allocated, return SH_C_MEM_ALLOC_ERR error. 

2. Attempt to load the cluster database into memory from disk. If a 
cluster database is not found, return SH_C_CLUS_DB_LOAD_ERR 
error. If memory can not be allocated, return 
SH_C_MEM_ALLOC_ERR error. 

3. Attempt to load the SAT into memory from disk. If a SAT structure is 
not found, return SH_C_SAT_LOAD_ERR. If memory can not be 
allocated, return SH_C_MEM_ALLOC_ERR error. 

4. Construct the handle to data segment table in memory. 
5. Return NO_ERROR. 

 
1.5 Effects 

• This function reduces the available primary memory to 
accommodate the databases.  

•  
1.6 Errors 

SH_C_CONFIG_DB_LOAD_ERR 
This error is returned if the data loaded from disk does not 
represent a configuration database structure. 
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SH_C_CLUS_DB_LOAD_ERR 
This error is returned if the data loaded from disk does not 
represent a cluster database structure. 

SH_C_SAT_LOAD_ERR 
This error is returned if the data loaded from disk does not 
represent a SAT structure. 

SH_C_MEM_ALLOC_ERR 
This error is returned if a memory allocation library call fails to 
return a valid buffer pointer. 
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2. sh_c_make_dseg 

This function creates a child node in the storage hierarchy and designates it as a 
data segment node.  

2.1 Prototype 
unsigned int sh_c_make_dseg( 

const char * const path 
const unsigned int node 
const unsigned int size); 
 

2.2 Inputs 
• path 

The absolute path in the storage hierarchy of the parent of the new 
child node. The string is null-terminated and cannot exceed 
MAX_PATH_LENGTH bytes in length (including the null 
terminator). 

• node 
The name of the new data segment node. 

• size  
Defines the size of the data segment in bytes. 
 

2.3 Outputs 
• Function Result  

A numerical value that indicates success or failure of the function. 
 

2.4 Processing 
1. Verify that there exists enough free disk space to create a data segment 

of the specified input size.  If the space does not exist, then return 
SH_C_DISKSPACE error. 

2. Validate the input path as a correctly formed path string. Return 
SH_C_MALFORMED_PATH error if validation fails.  The path shall 
only consist of the following characters: /, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 
NULL. 

3. Attempt to walk the storage hierarchy along the specified input path. 
Return SH_C_PATH_ERROR error if the path specified by the input 
path does not exist in the storage hierarchy. 

4. Verify that the specified child node to be created does not already 
exist. If it does, return the SH_C_NODE_ALREADY_EXISTS error. 

5. Verify that the addition of this child would not exceed the configured 
maximum child limit. Return SH_C_CHILD_LIMIT_REACHED 
error of it does. 

6. Instantiate the data segment node by updating the parent node’s node 
table structure, reserve required storage memory, initialize the storage 
memory to 0x0. 
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7. Calculate the message authenticate code for the segment and store the 
hash in the parent node’s table structure.  

8. Return NO_ERROR. 
 

2.5 Effects 
• The node directory table of the new data segment node’s parent node 

is updated to reflect the creation of the new data segment node. 
• Space necessary to store the data segment is reserved by updating the 

internal data structures of the storage hierarchy. 
• The data segment node entry in the directory table structure is 

modified, with the data segment length field set to the specified input 
size and the hash field set to the calculated hash.  

• The data segment is initialized to 0x0 in every byte.  
2.6 Errors 

SH_C_DISKSPACE 
This error is returned if there is not enough free disk space to 
create a data segment of the input size. 

SH_C_MALFORMED_PATH 

This error is returned if the input path is not a correctly formed 
concatenated string of integer values separated by forward-slashes, 
“/.” 

SH_C_PATH_ERROR 
This error is returned if the input path does not exist in the storage 
hierarchy tree structure. 

SH_C_NODE_ALREADY_EXISTS 
This error is returned if the node specified by the input path and 
node already exists. 

SH_C_CHILD_LIMIT_REACHED 
This error is returned if creating a new child node would exceed 
the configured maximum child count at the level specified by input 
path. 
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3. sh_c_make_subtree 

This function creates a child node in the storage hierarchy and designates it as a 
directory node.  

3.1 Prototype 
unsigned int sh_c_make_subtree( 

const char *  const path 
const unsigned int node); 

 
3.2 Inputs 

• path 
The absolute path in the storage hierarchy to the parent of a new child 
node. The string is null-terminated and cannot exceed 
MAX_PATH_LENGTH bytes in length. 

• node 
The name of the new directory node. 
 

3.3 Outputs 
• Function Result  

A numerical value that indicates success or failure of the function on 
the specified path. 
 

3.4 Processing 
1. Verify that there exists enough free disk space to create a directory 

node If the space does not exist, then return SH_C_DISKSPACE error. 
2. Validate the input path as a correctly formed path string. Return 

SH_C_MALFORMED_PATH error if validation fails. The path shall 
only consist of the following characters: /, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 
NULL. 

3. Attempt to walk the storage hierarchy along the specified input path. 
Return SH_C_PATH_ERROR error if the path specified by the input 
path does not exist in the storage hierarchy. 

4. Verify that the specified child node to be created does not already 
exist. If it does, return the SH_C_NODE_ALREADY_EXISTS error. 

5. Allocate disk space for the node and initialize it to 0x0. 
6. Instantiate the directory node by updating the parent node’s node 

directory structure 
7. Return NO_ERROR. 
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3.5 Effects 
• The node directory table of the new directory node’s parent node is 

updated to reflect the creation of the new directory node. 
• A new directory table structure is created in a free data block for the 

new directory node’s table structure. 
• The amount of available disk space is reduced  

3.6 Errors 
SH_C_DISKSPACE 

This error is returned if there is not enough free disk space to 
create a directory node. 

SH_C_MALFORMED_PATH 

This error is returned if the input path is not a correctly formed 
concatenated string of integer values separated by forward-slashes, 
“/.” 

SH_C_PATH_ERROR 
This error is returned if the input path does not exist in the storage 
hierarchy tree structure. 

SH_C_NODE_ALREADY_EXISTS 
This error is returned if the node specified by the input path 
already exists.  
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4. sh_c_open_dseg 

This function returns a handle associated with the specified data segment and 
allows it to be written to and read from.  

4.1 Prototype 
unsigned int sh_open_dseg( 

const char * const path 
const unsigned int node 
const unsigned int * handle); 

 
4.2 Inputs 

• path 
The absolute path in the storage hierarchy to the parent of a data 
segment node. The string is null-terminated and cannot exceed 
MAX_PATH_LENGTH bytes in length. 

• node 
The name of the data segment node. 
 

4.3 Outputs 

• Handle  
A handle to the associated data segment.  

• Function Result  
A numerical value that indicates success or failure of the function. 
 

4.4 Processing 
1. Verify that there is an available handle to return. Return 

SH_C_HANDLE_TABLE_FULL if no handle is available. 
2. Validate the input path as a correctly formed path string. Return 

SH_C_MALFORMED_PATH error if validation fails. The path shall 
only consist of the following characters: /, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 
NULL. 

3. Attempt to walk the storage hierarchy along the input path. Return 
SH_C_PATH_ERROR error if the path specified by the input path 
does not exist in the storage hierarchy. 

4. Verify that there exists a child at the input node off the parent. If no 
such child node exists, return SH_C_NO_SUCH_NODE. 

5. Verify that the specified child node is a data segment node. If it is a 
directory node, return SH_C_NODE_NOT_DSEG error. 

6. Verify that the specified data segment is not already in an open state. 
Return SH_C_DSEG_ARLEADY_OPEN error if the segment is 
already open. 

7. Associate a handle with the data segment and return the  handle. 
8. Return NO_ERROR. 

4.5 Effects 
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• The configuration interface open data segment database is modified to 
associate the generated handle value with the specified data segment. 
The data segment is designated as being in an ‘open’ state.  
 

4.6 Errors 
SH_C_HANDLE_TABLE_FULL 

This error is returned if too many segments are already open and 
no handles are available. 

SH_C_MALFORMED_PATH 
This error is returned if the input path is not a correctly formed 
concatenated string of integer values separated by forward-slashes, 
“/.” 

SH_C_PATH_ERROR 
This error is returned if the input path does not exist in the storage 
hierarchy tree structure. 

SH_C_NO_SUCH_NODE 
This error is returned if the combination of input path and node 
does not exist. 

SH_C_NODE_NOT_DSEG 
This error is returned if the node specified by the input path is not 
designated as a data segment node. 

SH_C_DSEG_ALREADY_OPEN 
This error is returned if the specified data segment is already open. 
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5. sh_c_write_dseg 

This function writes  data from the specified buffer to the specified data segment 
starting at the offset provided. 

5.1 Prototype 
unsigned int sh_c_write_dseg( 

const unsigned int handle 
const void * const buffer 
const unsigned int byte_count 
const unsigned int offset 
unsigned int * bytes_written); 

5.2 Inputs 
• handle 

The handle to the data segment to be written to.  
• buffer 

The buffer from which the data is read. 
• byte_count 

The number of bytes to write into the data segment. 
• offset 

The offset into the data segment where writing is to begin. 
 

5.3 Outputs 
• bytes_written  

The actual number of bytes written to the data segment.  
• Function Result  

A numerical value that indicates success or failure of the function. 
 

5.4 Processing 
1. Set output bytes written to zero. 
2. Validate the input handle is associated with an open segment. Return 

SH_C_HANDLE_INVALID if it is not 
3. Verify that the specified offset is within the bounds of the specified 

data segment. Return SH_C_OFFSET_BOUND_ERROR error if it is 
not. 

4. Verify that the input buffer is not NULL. Return 
SH_C_INPUT_BUFF_NULL if it is null. 

5. Verify that the specified number of bytes to read from the buffer can 
be accommodated by the data segment from the specified offset. 
Return SH_C_INSUFFICENT_SPACE error if it cannot.   

6. Attempt to write the specified number of bytes from the specified 
buffer. Set the output bytes written to the number of bytes successfully 
written.  

7. Return NO_ERROR. 
5.5 Effects 
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• Disk sectors are modified. If a close operation is not performed before 
the system halts, then the segment will be in a corrupted state because 
the stored hash will not correspond to the contents of the segment. 

• If the input buffer is an invalid pointer, the behavior of the program is 
undefined, and will probably lead to a termination of the program by 
the operating systems. 
 

5.6 Errors 
SH_C_HANDLE_INVALD 

This error if the specified handle is not a valid handle because it 
does not exist in the open data segment database. 

SH_C_OFFSET_BOUND_ERROR 
This error is returned if the specified input offset is outside the 
bounds of the data segment. 

SH_C_INPUT_BUFF_NULL 
This error is returned if the specified input buffer pointer is NULL. 

SH_C_INSUFFICENT_SPACE 
This error is returned if writing the amount of bytes specified by 
input length into the specified data segment beginning at the 
specified input offset would cause data to be written beyond the 
edge of the data segment. 
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6. sh_c_close_dseg 

This function closes the data segment associated with the supplied handle and 
calculates and stores the hash value for the segment.  

6.1 Prototype 
unsigned int sh_close_dseg(const unsigned int handle); 
 

6.2 Inputs 
• handle 

The handle of a data segment to be closed.  
 

6.3 Outputs 
• Function Result 

A numerical value that indicates success or failure of the function. 
 

6.4 Processing 
1. Validate the input handle is associated with a data segment. Return 

SH_C_HANDLE_INVALID error if it is not. 
2. Calculate the hash value of the data stored in the data segment 

associated with the input handle and update the meta-data for the 
segment in the parent directory node. 

3. Remove the entry associated with the specified handle from the open 
data segment database node.  

4. Return NO_ERROR.  
 

6.5 Effects 
• The hash value stored in the meta-data associated with the data 

segment is updated to reflect its (potentially) new contents. The handle 
is removed from the open data segment database and the data segment 
may no longer be written to or read from until it is opened again. 
 

6.6 Errors 
SH_C_HANDLE_INVALD 

This error if the specified handle is not a valid handle because it 
does not exist in the open data segment database. 
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7. sh_c_delete_dseg 

This function removes a data segment node from the storage hierarchy and frees 
its associated data blocks.  

7.1 Prototype 
unsigned int sh_c_delete_dseg( 

const char * const path 
const unsigned int node); 

 
7.2 Inputs 

• path 
The absolute path in the storage hierarchy to the parent of the data 
segment to be deleted. The string is null-terminated and cannot exceed 
MAX_PATH_LENGTH bytes in length. 

• node 
The name of the node to be deleted. 
 

7.3 Outputs 
• Function Result 

A numerical value that indicates success or failure of the function. 
 

7.4 Processing 
1. Validate the input path as a correctly formed path string. Return 

SH_C_MALFORMED_PATH error if validation fails. The path shall 
only consist of the following characters: /, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 
NULL. 

2. Attempt to walk the storage hierarchy along the specified input path. 
Return SH_C_PATH_ERROR error if the path specified by the input 
path does not exist in the storage hierarchy. 

3. Verify that a data segment record exists for the input node and path. 
Return SH_C_NO_SUCH_NODE if it does not. 

4. Verify that the specified child node is a data segment node. If it is a 
directory node, return SH_C_NODE_NOT_DSEG error. 

5. Remove the data segment node’s meta-data from the storage hierarchy 
and free the storage memory associated with the deleted node.  

6. Return NO_ERROR. 
 

7.5 Effects 
• The parent of the deleted node is updated to reflect the removal of the 

data segment node. 
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• Storage hierarchy internal data structures are modified so that storage 
memory allocated to the data segment are freed and available for 
future allocation. 

7.6 Errors 
SH_C_MALFORMED_PATH 

This error is returned if the input path is not a correctly formed 
concatenated string of integer values separated by forward-slashes, 
“/.” 

SH_C_PATH_ERROR 
This error is returned if the input path does not exist in the storage 
hierarchy tree structure. 

SH_C_NO_SUCH_NODE 
This error is returned if the combination of input path and node 
does not exist. 

SH_C_NODE_NOT_DSEG 
This error is returned if the node specified by the input path is not 
designated as a data segment node. 
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8. sh_c_delete_subtree 

This function removes the specified directory node and all of its children nodes 
from the storage hierarchy. 

8.1 Prototype 
unsigned int sh_c_delete_subtree( 

const char * const path 
const unsigned int node); 

 
8.2 Inputs 

• path 
The absolute path in the storage hierarchy to the parent of the directory 
node to be removed. The string is null-terminated and cannot exceed 
MAX_PATH_LENGTH bytes in length. 

• node 
The name of the directory table node. 
 

8.3 Outputs 
• Function Result 

A numerical value that indicates success or failure of the function. 
 

8.4 Processing 
1. Validate the input path as a correctly formed path string. Return 

SH_C_MALFORMED_PATH error if validation fails. The path shall 
only consist of the following characters: /, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 
NULL 

2. Attempt to walk the storage hierarchy along the specified input path. 
Return SH_C_PATH_ERROR error if the path specified by the input 
path does not exist in the storage hierarchy or only consists of ‘/’. 

3. Verify that a directory table record exists for the input node and path. 
Return SH_C_NO_SUCH_NODE if it does not 

4. Verify that the specified node is a directory node. If it is a data 
segment node, return SH_C_NODE_NOT_DNODE error. 

5. For all child data segment nodes, call sh_c_delete_dseg. For all 
child directory nodes, call this function (recursive). 

6. Remove the meta-data of the input node from the directory table 
associated with the input path. 

7. Mark the storage memory associated directory the node as available.  
8. Return NO_ERROR. 
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8.5 Effects 
• The node directory table associated with the input path is updated to 

reflect the removal of the input node. 
• Storage hierarchy internal data structures are modified so that storage 

memory allocated to the directory node and all of its children nodes 
are freed and available for future allocation. 
 

8.6 Errors 
SH_C_MALFORMED_PATH 

This error is returned if the input path is not a correctly formed 
concatenated string of integer values separated by forward-slashes, 
“/.” 

SH_C_PATH_ERROR 
This error is returned if the input path does not exist in the storage 
hierarchy tree structure. 

SH_C_NO_SUCH_NODE 
This error is returned if the combination of input path and node 
does not exist. 

SH_C_NODE_NOT_DNODE 
This error is returned if the node specified by the input path is not 
designated as a directory node. 
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9. sh_c_get_child 

This function returns a child nodes’ name and node type (data segment or 
directory) at the specified offset from the specified path in the storage hierarchy.  
This function provides a mechanism for “listing the contents” of a directory node. 

9.1 Prototype 
unsigned int sh_c_get child( 

const char * path 
const unsigned int node 
const unsigned int child_offset 
unsigned int * name 
char * type); 

 

9.2 Inputs 
• path 

The absolute path in the storage hierarchy to the parent of the directory 
node to be enumerated. The string is null-terminated and cannot 
exceed MAX_PATH_LENGTH bytes in length. 

• node 
The name of the directory node. 

• offset 
The offset into the list of children of the input parent node. 
 

9.3 Outputs 
• name 

The name of the node at the specified offset as an unsigned int value. 
• type 

The type of the node at the specified offset, where 
NODE_TYPE_DSEG denotes a data segment node and 
NODE_TYPE_DIRT denotes a directory node. 

• Function Result 
A numerical value that indicates success or failure of the function. 
 

9.4 Processing 
1. Validate the input path as a correctly formed path string. Return 

SH_C_MALFORMED_PATH error if validation fails. The path shall 
only consist of the following characters: /, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 
NULL. 

2. Attempt to walk the storage hierarchy along the specified input path. 
Return SH_C_PATH_ERROR error if the path specified by the input 
path does not exist in the storage hierarchy. 
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3. Verify that a data segment record exists for the input node and path. 
Return SH_C_NO_SUCH_NODE if it does not 

4. Verify that the input path and node specifies a directory node. If it is a 
data segment node, return SH_C_NODE_NOT_DNODE error. 

5. Verify that input offset is not out of bounds of the list of children. 
Return SH_C_OFFSET_BOUND_ERROR if it is out of bounds. 

6. Return the child node name and type. 
7. Return NO_ERROR. 

 
9.5 Effects 

• This function has no effects.  
9.6 Errors 

SH_C_MALFORMED_PATH 
This error is returned if the input path is not a correctly formed 
concatenated string of integer values separated by forward-slashes, 
“/.” 

SH_C_PATH_ERROR 
This error is returned if the input path does not exist in the storage 
hierarchy tree structure. 

SH_C_NO_SUCH_NODE 
This error is returned if the combination of input path and node 
does not exist. 

SH_C_NODE_NOT_DNODE 
This error is returned if the node specified by the input path is not 
designated as a directory node. 

SH_C_OFFSET_BOUND_ERROR 
This error is returned if the specified offset is not within the list of 
children. 
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10. sh_c_get_dseg_size 

This function returns the length of the specified data segment in bytes. 

10.1 Prototype 
unsigned int sh_c_get_dseg_size( 

const char * const path 
const unsigned int node 
const unsigned int * size); 

 
10.2 Inputs 

• path 
The absolute path in the storage hierarchy to new child node. The 
string is null-terminated and cannot exceed MAX_PATH_LENGTH 
bytes in length. 

• node 
The name of the node to retrieve the size for. 
 

10.3 Outputs 

• Size  

The size of the data segment in bytes.  
• Function Result  

A numerical value that indicates success or failure of the function. 
 

10.4 Processing 
1. Validate the input path as a correctly formed path string. Return 

SH_C_MALFORMED_PATH error if validation fails. The path shall 
only consist of the following characters: /, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 
NULL. 

2. Attempt to walk the storage hierarchy along the specified input path. 
Return SH_C_PATH_ERROR error if the path specified by the input 
path does not exist in the storage hierarchy. 

3. Verify that a data segment record exists for the input node and path. 
Return SH_C_NO_SUCH_NODE if it does not 

4. Verify that the specified child node is a data segment node. If it is a 
directory node, return SH_C_NODE_NOT_DSEG error. 

5. Consult the directory node table of the child node’s parent node and 
return the size in bytes for the data segment it reports. 

6. Return NO_ERROR. 
 

10.5 Effects 
• This function has no effects.  

10.6 Errors 
SH_C_MALFORMED_PATH 
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This error is returned if the input path is not a correctly formed 
concatenated string of integer values separated by forward-slashes, 
“/.” 

SH_C_PATH_ERROR 
This error is returned if the input path does not exist in the storage 
hierarchy tree structure. 

SH_C_NO_SUCH_NODE 
This error is returned if the combination of input path and node 
does not exist. 

SH_C_NODE_NOT_DSEG 
This error is returned if the node specified by the input path is not 
designated as a data segment node. 
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11. sh_c_get_dseg_hash 

This function returns the hash value of the specified data segment. 

11.1 Prototype 
unsigned int sh_c_get_dseg_hash( 

const char * const const path 
const unsigned int node 
const void * const buffer); 

 
11.2 Inputs 

• path 
The absolute path in the storage hierarchy to the data segment node. 
The string is null-terminated and cannot exceed 
MAX_PATH_LENGTH bytes in length. 

• node 
The name of the node to retrieve the stored hash for. 
 

11.3 Outputs 
• buffer 

The 256-bit buffer where the hash value of the data segment will be 
placed. 

• Function Result 
A numerical value that indicates success or failure of the function. 
 

11.4 Processing 
1. Verify that the output buffer pointer is not null. Return 

SH_C_BUFF_PTR_NULL if it is. 
2. Validate the input path as a correctly formed path string. Return 

SH_C_MALFORMED_PATH error if validation fails. The path shall 
only consist of the following characters: /, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 
NULL. 

3. Attempt to walk the storage hierarchy along the specified input path. 
Return SH_C_PATH_ERROR error if the path specified by the input 
path does not exist in the storage hierarchy. 

4. Verify that a data segment record exists for the input node and path. 
Return SH_C_NO_SUCH_NODE if it does not 

5. Verify that the specified child node is a data segment node. If it is a 
directory node, return SH_C_NODE_NOT_DSEG error. 

6. Return the hash value stored in meta-data associated with the specified 
data segment.  

7. Return NO_ERROR. 
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11.5 Effects 
• If the output buffer is an invalid pointer, then the behavior of the 

program is undefined, and will probably lead to termination of the 
program by the operating system.  
 

11.6 Errors 
SH_C_BUFF_PTR_NULL 

This error is returned if the input buffer is NULL. 
SH_C_MALFORMED_PATH 

This error is returned if the input path is not a correctly formed 
concatenated string of integer values separated by forward-slashes, 
“/.” 

SH_C_PATH_ERROR 
This error is returned if the input path does not exist in the storage 
hierarchy tree structure. 

SH_C_NO_SUCH_NODE 
This error is returned if the combination of input path and node 
does not exist. 

SH_C_NODE_NOT_DSEG 
This error is returned if the node specified by the input path is not 
designated as a data segment node. 
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12. sh_c_read_dseg 

This function reads the specified number of bytes starting at the offset provided 
from the data segment associated with the specified handle and writes it into the 
specified buffer. 

12.1 Prototype 
unsigned int sh_c_read_dseg( 

const unsigned int handle 
const void * const buffer 
const unsigned int byte_count 
const unsigned int offset 
unsigned int * bytes_read); 

12.2 Inputs 
• handle 

The handle to a data segment to be read.  
• byte_count 

The number of bytes to read from the data segment. 
• offset 

The offset into the data segment to begin reading data. 
 

12.3 Outputs 
• bytes_read 

The number of bytes actually read from the specified data segment and 
placed into the input buffer. 

• buffer 
The pointer to the buffer to which data will be written. 

• Function Result 
A numerical value that indicates success or failure of the function. 
 

12.4 Processing 
1. Set the output bytes_read to zero. 
2. Validate the input handle is associated with an open segment. Return 

SH_C_HANDLE_INVALID if it is not 
3. Validate that the buffer is not null. Return 

SH_C_OUTPUT_BUFF_NULL if the pointer is null. 
4. Verify that the specified offset is within the bounds of the specified 

data segment. Return SH_C_OFFSET_BOUND_ERROR error if it is 
not.   

5. Read the contents of the specified data segment at the specified offset, 
writing into the specified buffer.  

6. Return the number of bytes read from the data segment. 
7. Return NO_ERROR. 
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12.5 Effects 
• If the input buffer is an invalid pointer, then the behavior of the 

program is undefined, and will probably lead to termination of the 
program by the operating system. 

12.6 Errors 
SH_C_HANDLE_INVALD 

This error if the specified handle is not a valid handle because it 
does not exist in the open data segment database 

SH_C_OFFSET_BOUND_ERROR 
This error is returned if the specified input offset is outside the 
bounds of the data segment. 

SH_C_ OUTPUT_BUFF_NULL 
This error is returned if the specified buffer cannot be written to. 
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13. sh_c_check_hash 

This function calculates the hash of the contents of the specified data segment and 
compares it with the hash stored in meta-data. 

13.1 Prototype 
unsigned int sh_c_check_hash( 

const char * const path 
const unsigned int node 
unsigned int * result); 

 
13.2 Inputs 

• path 
The absolute path in the storage hierarchy to a data segment node. The 
string is null-terminated and cannot exceed MAX_PATH_LENGTH 
bytes in length. 

• node 
The name of the data segment node. 
 

13.3 Outputs 
• result 

A value indicating the result of the hash comparison.  
• Function Result 

A numerical value that indicates success or failure of the function. 
 

13.4 Processing 

1. Validate the input path as a correctly formed path string. Return 
SH_C_MALFORMED_PATH error if validation fails. The path shall 
only consist of the following characters: /, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 
NULL. 

2. Attempt to walk the storage hierarchy along the specified input path. 
Return SH_C_PATH_ERROR error if the path specified by the input 
path does not exist in the storage hierarchy. 

3. Verify that a data segment record exists for the input node and path. 
Return SH_C_NO_SUCH_NODE if it does not 

4. Verify that the specified child node is a data segment node. If it is a 
directory node, return SH_C_NODE_NOT_DSEG error. 

5. Calculate the hash of the contents of the data segment and compare the 
result with the hash stored in the meta-data associated with the data 
segment. 

6. Set the output result to HASH_EQUAL if the hash calculated is the 
same as the hash stored, or HASH_NOT_EQUAL if the hashes are not 
equal. 

7. Return NO_ERROR. 
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13.5 Effects 
• This function has no effects.  

13.6 Errors 
SH_C_MALFORMED_PATH 

This error is returned if the input path is not a correctly formed 
concatenated string of integer values separated by forward-slashes, 
“/.” 

SH_C_PATH_ERROR 

This error is returned if the input path does not exist in the storage 
hierarchy tree structure. 

SH_C_NO_SUCH_NODE 
This error is returned if the input path does not exist in the storage 
hierarchy tree structure. 

SH_C_NODE_NOT_DSEG 
This error is returned if the node specified by the input path is not 
designated as a data segment node. 
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B. INITIALIZATION INTERFACE 

This section describes the functions used by the LPSK during system start up and 

initialization. The functions are exposed to the LPSK as a series of function calls. They 

are: 

• sh_i_initialize_databases 

• sh_i_get_handle 

• sh_i_read_in 

• sh_i_get_dseg_size 

• sh_i_get_dseg_hash 

The following subsection details these functions. 
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1. sh_i_initialize_databases 

This function reads the  storage hierarchy configuration databases from disk in 
memory.  

1.1 Prototype 
unsigned int sh_i_initialize_databases ( 

const unsigned int offset 
const unsigned int num_dsegs); 
 

1.2 Inputs 
• offset 

The disk block offset into the storage medium where the storage 
hierarchy configuration data is located. 

• num_dsegs 
The number of handles that will be associated with data segments. 
 

1.3 Outputs 
• Function Result 

A numerical value that indicates success or failure of the function. 
 

1.4 Processing 
1. Attempt to read the configuration database from disk at input offset 

into memory. If a configuration database was not found, return 
SH_C_CONFIG_DB_LOAD_ERR error. If there is not enough 
primary memory, cause the kernel to halt. 

2. Attempt to read the SAT from disk into memory. If a SAT structure 
was not found, return SH_C_SAT_LOAD_ERR. If there is not enough 
primary memory, cause the kernel to halt. 

3. Construct the handle to data segment table in memory with as many 
rows as input num_dsegs. If there is not enough primary memory, 
cause the kernel to halt. 

4. Return NO_ERROR. 
 

1.5 Effects 
• The amount of available memory will be reduced by the amount 

needed for configuration database, SAT, and handle table.  
• The platform may halt if insufficient memory is available.  
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1.6 Errors 
SH_C_CONFIG_DB_LOAD_ERR 

This error is returned if the data loaded from disk does not 
represent a configuration database structure. 

SH_C_CLUS_DB_LOAD_ERR 
This error is returned if the data loaded from disk does not 
represent a cluster database structure. 

SH_C_SAT_LOAD_ERR 
This error is returned if the data loaded from disk does not 
represent a SAT structure. 

 



 109

2. sh_i_get_handle 
This function associates a specified path to a data segment with a new handle, 
which is returned to the caller.  

2.1 Prototype 
unsigned int sh_i_get_handle( 

const char * const path 
const unsigned int node 
const unsigned int * handle); 

 
2.2 Inputs 

• path 
The absolute path in the storage hierarchy to the parent of the data 
segment to associate with a new handle. The string is null-terminated 
and cannot exceed MAX_PATH_LENGTH bytes in length. 

• node 
The name of the node to associate with a handle. 
 

2.3 Outputs 
• handle 

The handle associated with the specified path. 
• Function Result 

A numerical value that indicates success or failure of the function. 
 

2.4 Processing 
1. Validate that the handle table has been initialized. Cause the kernel to 

halt if the handle table has not been initialized.  
2. Validate that the specified path has not already been associated with a 

handle. Cause the kernel to halt if it has.  
3. Cause the kernel to halt if there are no handles available. 
4. Validate the input path as a correctly formed path string. Return 

SH_I_MALFORMED_PATH error if validation fails. 
5. Attempt to walk the storage hierarchy along the specified input path. 

Return SH_I_PATH_ERROR error if the path specified by the input 
path does not exist in the storage hierarchy. 

6. Verify that a data segment record exists for the input node and path. 
Return SH_C_NO_SUCH_NODE if it does not 

7. Verify that the specified child node is a data segment node. If it is a 
directory node, return SH_I_NODE_NOT_DSEG error. 

8. Associate an entry in the handle to path database and populate it with 
the input path/node and the data segment meta-data. 

9. Set the output handle with a handle to the entry in the handle to path 
database. 

10. Return NO_ERROR 
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2.5 Effects 
• An association is made between a data segment and handle in the 

handle-to-path data database and data segment meta-data is loaded in 
memory. 

• The platform may potentially halt if this interface is called before the 
handle table has been initialized or if multiple handles are requested 
for the same data segment . 

 
2.6 Errors 

SH_I_MALFORMED_PATH 
This error is returned if the input path is not a correctly formed 
concatenated string of integer values separated by forward-slashes, 
“/.” 

SH_I_PATH_ERROR 
This error is returned if the input path does not exist in the storage 
hierarchy tree structure. 

SH_C_NO_SUCH_NODE 
This error is returned if the combination of input path and node 
does not exist. 

SH_I_NODE_NOT_DSEG 
This error is returned if the node specified by the input path is not 
designated as a data segment node. 
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3. sh_i_read_in 

This function supports the swap in functional requirement by copying the data 
segment from secondary storage associated with the specified handle into the 
specified buffer.  

3.1 Prototype 
unsigned int sh_i_read_in( 

const unsigned int handle 
const void * buffer); 

 
3.2 Inputs 

• handle 
The handle associated with the desired data segment in the storage 
hierarchy. 

• buffer 
The memory buffer the data segment will be copied into. 
 

3.3 Outputs 
• Function Result 

A numerical value that indicates success or failure of the function. 
 

3.4 Processing 
1. Validate that the handle table has been initialized. Cause the kernel to 

halt if it has not been initialized.  
2. Validate the input handle is a member of the handle-to-path data 

structure. Return SH_R_HANDLE_INVALID error if it is not a 
member. 

3. Read data segment from areas of secondary storage specified by the 
meta-data associated with the handle. 

4. Copy the data  associated with the specified handle into the output 
buffer.  

5. Return NO_ERROR. 
 

3.5 Effects 
• The contents of a segment in primary memory is modified. 
• The platform may potentially halt if this interface is called before the 

handle table has been initialized. 
 

3.6 Errors 
SH_R_HANDLE_INVALID 

This error is returned if the value of input handle does not exist in 
the handle-to-path data structure of the storage hierarchy. 
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4. sh_i_get_dseg_size 

This function returns the size of the specified data segment.  

4.1 Prototype 
unsigned int sh_r_get_dseg_size( 

const unsigned int handle  
const unsigned int * size); 

 
4.2 Inputs 

• handle 
The handle associated with the desired data segment in the storage 
hierarchy. 
 

4.3 Outputs 
• size 

The size of the specified data segment in bytes. 
• Function Result 

A numerical value that indicates success or failure of the function. 
 

4.4 Processing 
1. Validate that the handle table has been initialized. Cause the kernel to 

halt if it has not been initialized. 
2. Validate the input handle is a member of the handle-to-path data 

structure. Return SH_R_HANDLE_INVALID error if it is not a 
member. 

3. Retrieve the path associated with the handle in the handle-to-path 
database. 

4. Using the input handle to reference the handle to path table, set the 
output size with the size cached in the handle to path table.  

5. Return NO_ERROR. 
 

4.5 Effects 
The platform may potentially halt if this interface is called before the 
handle table has been initialized.  
 

4.6 Errors 
SH_R_HANDLE_INVALID 

This error is returned if the value of input handle does not exist in 
the handle-to-path data structure of the storage hierarchy. 
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5. sh_i_get_dseg_hash 

This function returns the hash value of the specified data segment. 

5.1 Prototype 
unsigned int sh_i_get_dseg_hash( 

const unsigned int handle  
const void * const buffer); 

 
5.2 Inputs 

• handle 
The handle associated with the desired data segment in the storage 
hierarchy. 

• buffer 
The 256-bit buffer where the hash value of the data segment will be 
placed. 
 

5.3 Outputs 
• Function Result 

A numerical value that indicates success or failure of the function. 
 

5.4 Processing 
1. Validate that the handle table has been initialized. Cause the kernel to 

halt if it has not been initialized. 
2. Validate the input handle is a member of the handle-to-path data 

structure. Return SH_R_HANDLE_INVALID error if it is not a 
member. 

3. Using the input handle to reference the handle to path table, set the 
output buffer with the hash value cached in the handle to table 
database. 

4. Return NO_ERROR. 
 

5.5 Effects 
• The platform may potentially halt if this interface is called before the 

handle table has been initialized.. 
 

5.6 Errors 
SH_R_HANDLE_INVALID 

This error is returned if the value of input handle does not exist in 
the handle-to-path data structure of the storage hierarchy. 
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C. RUNTIME INTERFACE 

This section describes the functions used by the LPSK during run-time. The 

functions are exposed to the LPSK as a series of function calls. They are: 

• sh_r_read_in 

• sh_r_write_out 

• sh_r_get_dseg_size 

• sh_r_get_dseg_hash 

• sh_r_check_hash 

The following subsections detail these functions. 
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1. sh_r_read_in 

This function supports the swap in functional requirement by copying the data 
segment from secondary storage associated with the specified handle into the 
specified buffer.  

1.1 Prototype 
unsigned int sh_r_read_in( 

const unsigned int handle 
const void * buffer); 

 
1.2 Inputs 

• handle 
The handle associated with the desired data segment in the storage 
hierarchy. 

• buffer 
The memory buffer the data segment will be copied into. 
 

1.3 Outputs 
• Function Result 

A numerical value that indicates success or failure of the function. 
 

1.4 Processing 
1. Validate that the handle table has been initialized. Cause the kernel to 

halt if it has not been initialized.  
2. Validate the input handle is a member of the handle-to-path data 

structure. Return SH_R_HANDLE_INVALID error if it is not a 
member. 

3. Read data segment from areas of secondary storage specified by the 
meta-data associated with the handle. 

4. Copy the data segment associated with the specified handle into the 
output buffer.  

5. Return NO_ERROR. 
 

1.5 Effects 
• The contents of a segment in primary memory are modified. 
• The platform may potentially halt if this interface is called before the 

handle table has been initialized. 
 

1.6 Errors 
SH_R_HANDLE_INVALID 

This error is returned if the value of input handle does not exist in 
the handle-to-path data structure of the storage hierarchy. 
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2. sh_r_write_out 

This function satisfies the functional requirements of both swap out and flush 
calls by copying the contents of the specified buffer into the data segment 
associated with the specified handle and calculating a new hash value.  

2.1 Prototype 
unsigned int sh_r_write_out( 

const unsigned int handle 
const void * const buffer); 

 
2.2 Inputs 

• handle 
The handle associated with the desired data segment in the storage 
hierarchy. 

• buffer 
The memory buffer the data segment will be copied from. 
 

2.3 Outputs 
• Function Result 

A numerical value that indicates success or failure of the function. 
 

2.4 Processing 
1. Validate that the handle table has been initialized. Cause the kernel to 

halt if it has not been initialized. 
2. Validate the input handle is a member of the handle-to-path data 

structure. Return SH_R_HANDLE_INVALID error if it is not a 
member. 

3. Retrieve secondary storage location information for data segment  
associated with the specified handle. 

4. Copy the contents of the specified buffer into secondary storage. 
5. Calculate and store the hash value of the contents of the data segment 

into the associated meta-data field, return NO_ERROR. 
 

2.5 Effects 
• Portions of the secondary storage will be overwritten with the contents 

of the input buffer. 
• The hash value associated with the data segment is updated after new 

data has been written. 
• The platform may potentially halt if this interface is called before the 

handle table has been initialized 
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2.6 Errors 
SH_R_HANDLE_INVALID 

This error is returned if the value of input handle does not exist in 
the handle-to-path data structure of the storage hierarchy. 
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3. sh_r_get_dseg_size 

This function returns the size of the specified data segment.  

3.1 Prototype 
unsigned int sh_r_get_dseg_size( 

const unsigned int handle  
const unsigned int * size); 

 
3.2 Inputs 

• handle 
The handle associated with the desired data segment in the storage 
hierarchy. 
 

3.3 Outputs 
• size 

The size of the specified data segment in bytes. 
• Function Result 

A numerical value that indicates success or failure of the function. 
 

3.4 Processing 
1. Validate that the handle table has been initialized. Cause the kernel to 

halt if it has not been initialized. 
2. Validate the input handle is a member of the handle-to-path data 

structure. Return SH_R_HANDLE_INVALID error if it is not a 
member. 

3. Retrieve the path associated with the handle in the handle-to-path 
database. 

4. Using the input handle to reference the handle to path table, set the 
output size with the size cached in the handle to path table.  

5. Return NO_ERROR. 
 

3.5 Effects 
•  The platform may potentially halt if this interface is called before the 

handle table has been initialized. 
 

3.6 Errors 
SH_R_HANDLE_INVALID 

This error is returned if the value of input handle does not exist in 
the handle-to-path data structure of the storage hierarchy. 
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4. sh_r_get_dseg_hash 

This function returns the hash value of the specified data segment. 

4.1 Prototype 
unsigned int sh_r_get_dseg_hash( 

const unsigned int handle  
const void * const buffer); 

 
4.2 Inputs 

• handle 
The handle associated with the desired data segment in the storage 
hierarchy. 

• buffer 
The 256-bit buffer where the hash value of the data segment will be 
placed. 
 

4.3 Outputs 
• Function Result 

A numerical value that indicates success or failure of the function. 
 

4.4 Processing 
1. Validate that the handle table has been initialized. Cause the kernel to 

halt if it has not been initialized. 
2. Validate the input handle is a member of the handle-to-path data 

structure. Return SH_R_HANDLE_INVALID error if it is not a 
member. 

3. Using the input handle to reference the handle to path table, set the 
output buffer with the hash value cached in the handle to table 
database. 

4. Return NO_ERROR. 
 

4.5 Effects 
• The platform may potentially halt if this interface is called before the 

handle table has been initialized. 
 

4.6 Errors 
SH_R_HANDLE_INVALID 

This error is returned if the value of input handle does not exist in 
the handle-to-path data structure of the storage hierarchy. 
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5. sh_r_check_hash 
 

This function calculates the hash of the contents of the data segment associated 
with the specified handle and compares it with the hash stored in meta-data. 

5.1 Prototype 
unsigned int sh_r_check_hash( 

const unsigned int handle 
unsigned int * result); 

 
5.2 Inputs 

• handle 
The handle of the data segment. 
 

5.3 Outputs 
• result 

A value indicating the result of the hash comparison.  
• Function Result 

A numerical value that indicates success or failure of the function. 
 

5.4 Processing 

1. Validate that the handle table has been initialized. Cause the kernel to 
halt if it has not been initialized. 

2. Validate the input handle is a member of the handle-to-path data 
structure. Return SH_R_HANDLE_INVALID error if it is not a 
member. 

3. Calculate the hash of the contents of the data segment and compare the 
result with the hash stored in the meta-data associated with the data 
segment. 

4. Set the output result to HASH_EQUAL if the hash calculated is the 
same as the hash stored, or HASH_NOT_EQUAL if the hashes are not 
equal. 

5. Return NO_ERROR. 
 

5.5 Effects 
• The platform may potentially halt if this interface is called before the 

handle table has been initialized.  
 

5.6 Errors 
SH_R_HANDLE_INVALID 

This error is returned if the value of input handle does not exist in 
the handle-to-path data structure of the storage hierarchy. 
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APPENDIX B: TEST PROCEDURES 

This appendix contains the test procedures used to produce the results located in 

Chapter IV of this work. 

A. TEST PROCEDURES 

When an interface is invoked as part of a test procedure, it is described in this 

appendix as a function call accompanied by one or more parameters. Some test 

procedures may instruct the reader to perform specific steps from a previous procedure in 

the case of large amounts of redundancy in procedures. Each test procedure indicates the 

associated test program argument(s), the values of which are found in the header files of 

the configuration and LPSK test programs.  

1. Configuration Interfaces 

These test procedures are performed using the test program compiled with 

configuration interfaces and modules. Test procedures indicate which test program they 

use to perform which steps of the procedure 

sh_c_initialize_databases interface test procedure: These tests 

correspond to Test Group 1 as described in Table 14. 

Begin 

Configuration test program (argument value: TEST_C1) 

1. Call format function. 

2. Call sh_c_initialize_databases function with block_offset 
= 8. 

3. Confirm no error returned (test C1A). 

4. Call format function. 

5. Call sh_c_initialize_databases function with block_offset 
= 0. 

6. Confirm error SH_C_CONFIG_DB_LOAD_ERR returned (test C1B). 

7. Call format function with cluster_database_offset = 0. 
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8. Call sh_c_initialize_databases function with block_offset 
= 8. 

9. Confirm error SH_C_CLUS_DB_LOAD_ERR returned (test C1C). 

10. Call format function with SAT_offset = 0. 

11. Call sh_c_initialize_databases function with block_offset 
= 8. 

12. Confirm error SH_C_SAT_LOAD_ERR returned (test C1D). 

End  

 

sh_c_make_dseg interface test procedure: These tests correspond to Test 
Group 2 as described in Table 15. 

Begin 

Configuration test program (argument value: TEST_C2) 

1. Call format function. 

2. Call sh_c_initialize_databases function with 
block_offset = 8. 

3. Call sh_c_make_dseg function with path = “/”, node = 0, and 
size = 9000. 

4. Confirm no error returned (test C2A.1). 

5. Call sh_c_make_dseg function with path = “/”, node = 0, and 
size = 9000. 

6. Confirm error SH_C_NODE_ALREADY_EXISTS error returned (test 
C2A.2). 

7. Call format function 

8. Call sh_c_initialize_databases function with block_offset 
= 8. 

9. Call sh_c_make_dseg function with path = “/”, node = 128, 
and size = 9,000. 

10. Confirm error _SH_C_MAX_NODE_NAME returned (test C2B). 

11. Call sh_c_make_dseg function with path = “/”, node = 0, and 
size = 134217728. 

12. Confirm error SH_C_DISKSPACE returned (test C2C). 

13. Call sh_c_make_dseg function with path = “a”, node = 0, and 
size = 9000. 
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14. Confirm error SH_C_MALFORMED_PATH returned (test C2D). 

15. Call sh_c_make_dseg function with path = “/a”, node = 0, 
and size = 9000. 

16. Confirm error SH_C_MALFORMED_PATH returned (test C2E). 

17. Call sh_c_make_dseg function with path = “/0”, node = 0, 
and size = 9000. 

18. Confirm error SH_C_PATH_ERROR returned (test C2F). 

End 

 

sh_c_make_subtree interface test procedure: These tests correspond to Test 
Group 3 as described in Table 16. 

Begin 

Configuration test program (argument value: TEST_C3) 

1. Call format function. 

2. Call sh_c_initialize_databases function with block_offset 
= 8. 

3. Call sh_c_make_subtree function with path = “/” and node = 
0. 

4. Confirm no error returned (test C3A.1). 

5. Call sh_c_make_subtree function with path = “/” and node = 
0. 

6. Confirm error SH_C_NODE_ALREADY_EXISTS returned (test C3A.2). 

7. Call sh_c_make_subtree function with path = “/” and node = 
128. 

8. Confirm error _SH_C_MAX_NODE_NAME returned (test C3B). 

9. Call format function 

10. Call sh_c_initialize_databases function with block_offset 
= 8. 

11. Call sh_c_make_dseg function with path = “/”, node = 1, and 
size = 134209536. 

12. Call sh_c_make_subtree function with path = “/” and node = 
0. 

13. Confirm error SH_C_DISKSPACE returned (test C3C). 
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14. Call sh_c_make_subtree function with path = “a”. 

15. Confirm error SH_C_MALFORMED_PATH returned (test C3D). 

16. Call sh_c_make_subtree function with path = “/a”. 

17. Confirm error SH_C_MALFORMED_PATH returned (test C3E). 

18. Call sh_c_make_subtree function with path = “/0”. 

19. Confirm error SH_C_PATH_ERROR returned (test C3F). 

End 

 

sh_c_open_dseg interface test procedure: These tests correspond to Test 
Group 4 as described in Table 17. 

Begin 

Configuration test program (argument value: TEST_C4) 

1. Call format function. 

2. Set constant MAX_NUM_H_ROWS in configuration interfaces module to 2. 

3. Call sh_c_initialize_databases function with block_offset 
= 8. 

4. Call sh_c_make_dseg function with path = “/” and node = 1. 

5. Call sh_c_make_dseg function with path = “/” and node = 2. 

6. Call sh_c_make_dseg function with path = “/” and node = 3. 

7. Call sh_c_open_dseg function with path = “/” and node = 1. 

8. Confirm no error returned; handle zero returned (test C4A.1). 

9. Call sh_c_open_dseg function with path = “/” and node = 2. 

10. Confirm no error returned; handle one returned (test C4A.2). 

11. Call sh_c_open_dseg function with path = “/” and node = 3. 

12. Confirm error SH_C_HANDLE_TABLE_FULL returned (test C4A.3). 

13. Call format function. 

14. Call sh_c_initialize_database function with block_offset 
= 8. 

15. Call sh_c_open_dseg function with path = “/” and node = 10. 

16. Confirm error SH_C_NO_SUCH_NODE returned (test C4B). 

17. Call sh_c_make_subtree function with path = “a”. 

18. Confirm error SH_C_MALFORMED_PATH returned (test C4C). 
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19. Call sh_c_make_subtree function with path = “/a”. 

20. Confirm error SH_C_MALFORMED_PATH returned (test C4D). 

21. Call sh_c_make_subtree function with path = “/0”. 

22. Confirm error SH_C_PATH_ERROR returned (test C4E). 

End 

 

sh_c_write_dseg interface test procedure: These tests correspond to Test 
Group 5 as described in Table 18. 

Begin 

Configuration test program (argument value: TEST_C5) 

1. Call format function. 

2. Call sh_c_initialize_databases function with block_offset 
= 8. 

3. Call sh_c_make_dseg function with path = “/”, node = 1, and 
size = 9000. 

4. Call sh_c_open_dseg function with path = “/” and node = 1; 
handle zero returned. 

5. Create first 9,000 byte buffer in memory and fill with 9,000 a characters; 
assign pointer buf_ptr1 to buffer. 

6. Generate and store hash of first buffer. 

7. Call sh_c_make_dseg function with path = “/”, node = 2, and 
size = 9000. 

8. Call sh_c_open_dseg function with path = “/” and node = 2; 
handle one returned. 

9. Create second 9,000 byte buffer in memory and fill with 9,000 b 
characters; assign pointer buf_ptr2 to buffer. 

10. Generate and store hash of second buffer. 

11. Call sh_c_write_dseg function with handle = 0, buffer = 
buf_ptr1, byte_count = 9000, and offset = 0. 

12. Confirm no error returned (test C5A). 

13. Call sh_c_write_dseg function with handle = 1, buffer = 
buf_ptr2, byte_count = 4500, and offset = 0. 

14. Confirm no error returned (test C5B.1). 
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15. Call sh_c_write_dseg function with handle = 1, buffer = 
buf_ptr2, byte_count = 4500, and offset = 4500. 

16. Confirm no error returned (test C5B.2). 

17. Call sh_c_write__data function segment with handle = 2, 
buffer = buf_ptr1, byte_count = 9000, and offset = 0. 

18. Confirm error SH_C_HANDLE_INVALID returned (test C5C). 

19. Call sh_c_write_dseg function with handle = 0, buffer = 
buf_ptr1, byte_count = 9000, and offset = 9200. 

20. Confirm error SH_C_OFFSET_BOUND_ERROR returned (test C5D). 

21. Call sh_c_write_dseg function with handle = 0, buffer = 
buf_ptr1, byte_count = 8000, and offset = 2000. 

22. Confirm error SH_C_INSUFFICENT_SPACE returned (test C5E). 

23. Call sh_c_write_dseg function with handle = 0, buffer = 
NULL, byte_count = 0, and offset = 0. 

24. Confirm error SH_C_INPUT_BUFF_NULL returned (test C5F). 

End 

 

sh_c_read_dseg interface test procedure: These tests correspond to Test 
Group 6 as described in Table 19. 

Begin 

Configuration test program (argument value: TEST_C6) 

1. Repeat steps 1 through 16 from sh_c_write_dseg test procedure. 

2. Call sh_c_read_dseg function with handle = 0, buffer = 
buf_ptr1, byte_count = 9000, and offset = 0. 

3. Confirm no error returned; generate new hash of first buffer and confirm it 
matches previously generated hash to determine if (test C6A). 

4. Call sh_c_read_dseg function with handle = 1, buffer = 
buf_ptr2, byte_count = 4500, and offset = 0. 

5. Confirm no error returned (test C6B.1). 

6. Call sh_c_read_dseg function with handle = 1, buffer = 
buf_ptr2, byte_count = 4500, and offset = 4500. 

7. Confirm no error returned; generate new hash of second buffer and 
confirm it matches previously generated hash (test C6B.2). 
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8. Call sh_c_read_dseg function with handle = 2, buffer = 
buf_ptr1, byte_count = 9000, and offset = 0. 

9. Confirm error SH_C_HANDLE_INVALID returned (test C6C). 

10. Call sh_c_read_dseg function with handle = 0, buffer = 
buf_ptr1, byte_count = 9000, and offset = 9200. 

11. Confirm error SH_C_OFFSET_BOUND_ERROR returned (test C6D). 

12. Call sh_c_read_dseg function with handle = 0, buffer = 
NULL, byte_count = 0, and offset = 0. 

13. Confirm error SH_C_OUTPUT_BUFF_NULL returned (test C6E). 

End 
 

sh_c_close_dseg interface test procedure: These tests correspond to Test 
 Group 7 as described in Table 20. 

Begin 

Configuration test program (argument value: TEST_C7) 

1. Repeat steps 1 through 6 from sh_c_write_dseg test procedure. 

2. Call sh_c_close_dseg function with handle = 0. 

3. Confirm no error returned. 

4. Call sh_c_get_dseg_hash function with path = “/” and node 
= 1; compare returned hash with previous generated hash (test C7A.1). 

5. Call sh_c_close_dseg function with handle = 1. 

6. Confirm error SH_C_HANDLE_INVALID returned (test C7A.2). 

7. Call sh_c_close_dseg function with handle = 2. 

8. Confirm error SH_C_HANDLE_INVALID returned (test C7B). 

End 

 

sh_c_delete_dseg interface test procedure: These tests correspond to Test 
 Group 8 as described in Table 21. 

Begin 

Configuration test program (argument value: TEST_C8) 

1. Call format function. 

2. Call sh_c_initialize_databases function with block_offset 
= 8. 
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3. Call sh_c_make_dseg function with path = “/”, node = 1, and 
size = 9000. 

4. Call sh_c_make_subtree function with path = “/” and node = 
2. 

5. Call sh_c_delete_dseg function with path = “/” and node = 
1. 

6. Confirm no error returned (test C8A.1). 

7. Call sh_c_delete_dseg function with path = “/” and node = 
1. 

8. Confirm error SH_C_NO_SUCH_NODE returned (test C8A.2). 

9. Call sh_c_delete_dseg function with path = “/” and node = 
128. 

10. Confirm error SH_C_MAX_NODE_NAME returned (test C8B). 

11. Call sh_c_delete_dseg function with path = “/” and node = 
0. 

12. Confirm error SH_C_NO_SUCH_NODE returned (test C8C). 

13. Call sh_c_delete_dseg function with path = “/” and node = 
2. 

14. Confirm error SH_C_NODE_NOT_DSEG returned (test C8D). 

15. Call sh_c_delete_dseg function with path = “a”. 

16. Confirm error SH_C_MALFORMED_PATH returned (test C8E). 

17. Call sh_c_delete_dseg function with path = “/a”. 

18. Confirm error SH_C_MALFORMED_PATH returned (test C8F). 

19. Call sh_c_delete_dseg function with path = “/0”. 

20. Confirm error SH_C_PATH_ERROR returned (test C8G). 

End 

 

sh_c_delete_subtree interface test procedure: These tests correspond to 
Test Group 9 as described in Table 22. 

Begin 

Configuration test program (argument value: TEST_C9) 

1. Call format function. 
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2. Call sh_c_initialize_databases function with block_offset 
= 8. 

3. Call sh_c_make_subtree function with path = “/” and node = 
1. 

4. Call sh_c_make_subtree function with path = “/1” and node 
= 1. 

5. Call sh_c_make_subtree function with path = “/1” and node 
= 2. 

6. Call sh_c_make_dseg function with path = “/1/1” and node = 
1. 

7. Call sh_c_make_dseg function with path = “/1/2” and node = 
1. 

8. Call sh_c_delete_subtree function with path = “/1/1” and 
node = 1. 

9. Confirm error SH_C_NODE_DIRNODE returned (test C9A). 

10. Call sh_c_delete_subtree function with path = “/” and node 
= 1. 

11. Confirm no error returned (test C9B.1). 

12. Call sh_c_delete subtree with path = “/” and node = 1. 

13. Confirm error SH_C_NO_SUCH_NODE returned (test C9B.2). 

14. Call sh_c_delete subtree with path = “/1” and node = 1. 

15. Confirm error SH_C_PATH_ERROR returned (test C9B.3). 

16. Call sh_c_delete subtree with path = “/” and node = 128. 

17. Confirm error SH_C_MAX_NODE_NAME returned (test C9C). 

18. Call sh_c_delete subtree with path = “/” and node = 0. 

19. Confirm error SH_C_NO_SUCH_NODE returned (test C9D). 

20. Call sh_c_delete_subtree function with path = “a”. 

21. Confirm error SH_C_MALFORMED_PATH returned (test C9E). 

22. Call sh_c_delete_subtree function with path = “/a”. 

23. Confirm error SH_C_MALFORMED_PATH returned (test C9F). 

24. Call sh_c_delete_subtree function with path = “/0”. 

25. Confirm error SH_C_PATH_ERROR returned (test C9G). 
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End 

 

sh_c_get_child interface test procedure: These tests correspond to Test 
 Group 10 as described in Table 23. 

Begin 

Configuration test program (argument value: TEST_C10) 

1. Repeat steps 1 through 7 from sh_c_delete_subtree test procedure. 

2. Call sh_c_get_child function with path = “/”, node = 1, and 
offset = 0. 

3. Confirm no error returned; expected node name 1 and directory node type 
returned (test C10A). 

4. Call sh_c_get_child function with path = “/”, node = 1, and 
offset = 1. 

5. Confirm no error returned; expected node name 2 and directory node type 
returned (test C10B). 

6. Call sh_c_get_child function with path = “/”, node = 1, and 
offset = 2. 

7. Confirm error SH_C_OFFSET_BOUND_ERROR returned (test C10C). 

8. Call sh_c_get_child function with path = “/1”, node = 1, 
and offset = 0. 

9. Confirm no error returned; expected node name 1 and data segment node 
type returned (C10D). 

10. Call sh_c_get_child function with path = “/1/1”, node = 1, 
and offset = 0. 

11. Confirm error SH_C_NODE_NOT_DSEG returned (test C10E). 

12. Call sh_c_get_child function with path = “/”, node = 128, 
and offset = 0. 

13. Confirm error SH_C_MAX_NODE_NAME returned (test C10F). 

14. Call sh_c_get_child function with path = “/”, node = 0, and 
offset = 0. 

15. Confirm error SH_C_NO_SUCH_NODE returned (test C10G). 

16. Call sh_c_delete_subtree function with path = “a”. 

17. Confirm error SH_C_MALFORMED_PATH returned (test C10H). 

18. Call sh_c_delete_subtree function with path = “/a”. 
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19. Confirm error SH_C_MALFORMED_PATH returned (test C10I). 

20. Call sh_c_delete_subtree function with path = “/0”. 

21. Confirm error SH_C_PATH_ERROR returned (test C10J). 

End 
 

sh_c_get_dseg_size interface procedure test: These tests correspond to 
Test Group 11 as described in Table 24. 

Begin 

Configuration test program (argument value: TEST_C11) 

1. Call format function 

2. Call sh_c_initialize_databases function with block_offset 
= 8. 

3. Call sh_c_make_dseg function with path = “/”, node = 1, and 
size = 9000. 

4. Call sh_c_make_subtree function with path = “/” and node = 
2. 

5. Call sh_c_get_dseg_size function with path = “/” and node 
= 1. 

6. Confirm no error returned; 9,000 bytes returned (test C11A). 

7. Call sh_c_get_dseg_size function with path = “/” and node 
= 2. 

8. Confirm error SH_C_NODE_NOT_DSEG returned (test C11B). 

9. Call sh_c_get_dseg_size function with path = “/” and node 
= 3. 

10. Confirm error SH_C_NO_SUCH_NODE returned (test C11C). 

11. Call sh_c_get_dseg_size function with path = “/” and node 
= 128. 

12. Confirm error SH_C_MAX_NODE_NAME returned (test C11D). 

13. Call sh_c_get_dseg_size function with path = “a”. 

14. Confirm error SH_C_MALFORMED_PATH returned (test C11E). 

15. Call sh_c_get_dseg_size function with path = “/a”. 

16. Confirm error SH_C_MALFORMED_PATH returned (test C11F). 

17. Call sh_c_get_dseg_size function with path = “/0”. 
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18. Confirm error SH_C_PATH_ERROR returned (test C11G). 

End 
 

sh_c_get_dseg_hash interface procedure test: These tests correspond to 
Test Group 12 as described in Table 25. 

Begin 

Configuration test program (argument value: TEST_C12) 

1. Repeat steps 1 through 4 from sh_c_get_dseg_size test procedure. 

2. Call sh_c_open_dseg function with path = “/” and node = 1; 
handle zero returned. 

3. Create 9,000 byte buffer in memory and fill with 9,000 a characters; 
assign pointer buf_ptr1 to buffer. 

4. Generate and store hash of buffer. 

5. Call sh_c_write_dseg function with handle = 0, buffer = 
buf_ptr1, byte_count = 9000, and offset = 0. 

6. Call sh_c_close_dseg function with handle = 0. 

7. Call sh_c_make_subtree function with path = “/” and node = 
2. 

8. Call sh_c_get_dseg_hash function with path = “/” and node 
= 1. 

9. Confirm no error returned; compare returned hash with previous generated 
hash (test C12A). 

10. Call sh_c_get_dseg_hash function with path = “/” and node 
= 2. 

11. Confirm error SH_C_NODE_NOT_DSEG returned (test C12B). 

12. Call sh_c_get_dseg_hash function with path = “/” and node 
= 3. 

13. Confirm error SH_C_NO_SUCH_NODE returned (test C12C). 

14. Call sh_c_get_dseg_hash function with path = “/” and node 
= 128. 

15. Confirm error SH_C_MAX_NODE_NAME returned (test C12D). 

16. Call sh_c_get_dseg_hash function with path = “a”. 

17. Confirm error SH_C_MALFORMED_PATH returned (test C12E). 

18. Call sh_c_get_dseg_hash function with path = “/a”. 
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19. Confirm error SH_C_MALFORMED_PATH returned (test C12F). 

20. Call sh_c_get_dseg_hash function with path = “/0”. 

21. Confirm error SH_C_PATH_ERROR returned (test C12G). 

End 

 

sh_c_check_hash interface test procedure: These tests correspond to Test 
 Group 13 as described in Table 26. 

Begin 

Configuration test program (argument value: TEST_C13) 

1. Repeat steps 1 through 7 from sh_c_get_dseg_hash test procedure. 

2. Call sh_c_check_hash function with path = “/”, and node = 
1. 

3. Confirm no error returned; confirm true value returned (test C13A) 

4. Call sh_c_check_hash function with path = “/” and node = 2. 

5. Confirm error SH_C_NODE_NOT_DSEG returned (test C13B). 

6. Call sh_c_check_hash function with path = “/” and node = 3. 

7. Confirm error SH_C_NO_SUCH_NODE returned (test C13C). 

8. Call sh_c_check_hash function with path = “/” and node = 
128. 

9. Confirm error SH_C_MAX_NODE_NAME returned (test C13D). 

10. Call sh_c_check_hash function with path = “a”. 

11. Confirm error SH_C_MALFORMED_PATH returned (test C13E). 

12. Call sh_c_check_hash function with path = “/a”. 

13. Confirm error SH_C_MALFORMED_PATH returned (test C13F). 

14. Call sh_c_check_hash function with path = “/0”. 

15. Confirm error SH_C_PATH_ERROR returned (test C13G). 

End 
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2. Initialization Interfaces 

Initialization interface test procedures require use of both configuration and LPSK 

test tools described in Chapter IV. Test procedures indicate which test program they use 

to perform which steps of the procedure.  

sh_i_initialize_databases interface test procedures: These tests 

correspond to Test Group 1 as described in Table 27. 

Begin 

Configuration test program (argument value: TEST_I1A): 

1. Call format function. 

LPSK test program (argument value: TEST_I1A): 

2. Call sh_i_initialize_databases function with block_offset 
= 8. 

3. Confirm no error returned (test I1A). 

4. Restart LPSK test program: 

5. Call sh_i_initialize_databases function with block_offset 
= 0 and num_dsegs = 1. 

6. Confirm error SH_C_CONFIG_DB_LOAD_ERR returned (test I1B). 

Configuration test program (argument value: TEST_I1B): 

7. Call format function with cluster_database_offset = 0. 

LPSK test program (argument value: TEST_I1B): 

8. Call sh_i_initialize_databases function with block_offset 
= 8 and num_dsegs = 1. 

9. Confirm error SH_C_CLUS_DB_LOAD_ERR returned (test I1C). 

Configuration test program (argument value: TEST_I1B): 

10. Call format function with SAT_offset = 0. 

LPSK test program (argument value: TEST_I1B): 

11. Call sh_i__initialize_databases function with 
block_offset = 8 and num_dsegs = 1. 

12. Confirm error SH_C_SAT_LOAD_ERR returned (test I1D). 

End 
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sh_i_get_handle interface test procedure: These tests correspond to Test 
 Group 2 as described in Table 28. 

Begin 

Configuration test program (argument value: TEST_I2): 

1. Call format function. 

2. Call sh_c_sh_c_initialize_databases function with 
block_offset = 8. 

3. Call sh_c_sh_c_make_dseg function with path = “/” and node 
= 1. 

4. Call sh_c_sh_c_make_dseg function with path = “/” and node 
= 2. 

5. Call sh_c_sh_c_make_subtree function with path = “/” and 
node = 3. 

LPSK test program (argument value: TEST_I2): 

6. Call sh_i_initialize_databases function with block_offset 
= 8 and num_dsegs = 1. 

7. Call sh_i_get_handle function with path = “/” and node = 1. 

8. Confirm no error returned; handle zero returned (test I2A.1). 

9. Call sh_i_get_handle function with path = “/” and node = 2. 

10. Confirm error SH_C_HANDLE_TABLE_FULL returned (test I2A.2). 

11. Call sh_i_initialize_databases function with block_offset 
= 8 and num_dsegs = 1. 

12. Call sh_i_get_handle function with path = “/” and node = 3. 

13. Confirm error SH_C_NODE_NOT_DSEG returned (test I2B) 

14. Call sh_i_get_handle function with path = “/” and node = 
10. 

15. Confirm error SH_C_NO_SUCH_NODE returned (test I2C). 

16. Call sh_i_get_handle function with path = “/” and node = 
128. 

17. Confirm error SH_C_MAX_NODE_NAME returned (test I2D). 

18. Confirm error SH_C_MALFORMED_PATH returned (test I2E). 

19. Call sh_i_check_hash function with path = “/a”. 

20. Confirm error SH_C_MALFORMED_PATH returned (test I2F). 
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21. Call sh_i_check_hash function with path = “/0”. 

22. Confirm error SH_C_PATH_ERROR returned (test I2G). 

End 

 

sh_i_read_in interface test procedure: These tests correspond to Test Group 
3 as described in Table 29. 

Begin 

Configuration test program (argument value: TEST_I3): 

1. Call format function. 

2. Call sh_c_initialize_databases function with block_offset 
= 8. 

3. Call sh_c_make_dseg function with path = “/” and node = 1. 

4. Create 9,000 byte buffer in memory and fill with 9,000 a characters; 
assign pointer buf_ptr1 to buffer. 

5. Call sh_c_write_dseg function with handle = 0, buffer = 
buf_ptr1, byte_count = 9000, and offset = 0. 

6. Call sh_c_close_dseg function with handle = 0. 

LPSK test program (argument value: TEST_I3): 

7. Call sh_i_initialize_databases function with block_offset 
= 8 and num_dsegs = 1. 

8. Call sh_i_get_handle function with path = “/” and node = 1. 

9. Create 9,000 byte buffer in memory; assign pointer buf_ptr1 to buffer. 

10. Call sh_i_read_in function with handle = 0 and buffer = 
buf_ptr1. 

11. Confirm no error returned; confirm contents of buffer matches data written 
to the data segment created in step 4 (test I3A). 

12. Call sh_i_read_in function with handle = 1 and buffer = 
buf_ptr1. 

13. Confirm error SH_C_HANDLE_INVALID returned (test I3B). 

End 
 

sh_i_get_dseg_size interface test procedure: These tests correspond to 
Test Group 4 as described in Table 30. 

Begin 
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Configuration test program (argument value: TEST_I4): 

1. Call format function. 

2. Call sh_c_initialize_databases function with block_offset 
= 8. 

3. Call sh_c_make_dseg function with path = “/” and node = 1. 

LPSK test program (argument value: TEST_I4): 

4. Call sh_i_initialize_databases function with block_offset 
= 8 and num_dsegs = 1. 

5. Call sh_i_get_handle function with path = “/” and node = 1. 

6. Call sh_i_get_dseg_size function with handle = 0. 

7. Confirm no error returned; confirm 9,000 size output returned (test I4A). 

8. Call sh_i_get_dseg_size function with handle = 1. 

9. Confirm error SH_C_HANDLE_INVALID returned (test I4B). 

End 
 

sh_i_get_dseg_hash interface test procedure: These tests correspond to 
Test Group 5 as described in Table 31. 

Begin 

Configuration test program (argument value: TEST_I5): 

1. Call sh_c_format function. 

2. Call sh_c_initialize_databases function with block_offset 
= 8. 

3. Call sh_c_make_dseg function with path = “/” and node = 1. 

4. Call sh_c_open_dseg function with path = “/” and node = 1; 
handle zero returned. 

5. Create 9,000 byte buffer in memory and fill with 9,000 a character; assign 
pointer buf_ptr1 to buffer. 

6. Generate and store hash of buffer. 

7. Call sh_c_write_dseg function with handle = 0, buffer = 
buf_ptr1, byte_count = 9000, and offset = 0. 

8. Call sh_c_close_dseg function with handle = 0. 

LPSK test program (argument value: TEST_I5): 
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9. Call sh_i_initialize_databases function with block_offset 
= 8 and num_dsegs = 1. 

10. Call sh_i_get_handle function with path = “/” and node = 1. 

11. Call sh_i_get_dseg_hash function with handle = 0. 

12. Confirm no error returned; confirm returned hash matches previously 
generated hash (test I5A). 

13. Call sh_i_get_dseg_hash function with handle = 1. 

14. Confirm error SH_C_HANDLE_INVALID returned (test I5B). 

End 
 

3. Runtime Interfaces 

Runtime interface test procedures require use of both configuration and LPSK test 

tools described in Chapter IV. Test procedures indicate which test program they use to 

perform which steps of the procedure Some tests procedures are performed immediately 

after previous test procedures with no break in program execution. Instructions to 

continue to the next test procedure are appended to these test procedures. 

sh_r_read_in interface test procedure: These tests correspond to Test Group 
1 as described in Table 32. 

Begin 

Configuration test program (argument value: TEST_R1): 

1. Call sh_c_format function. 

2. Call sh_c_initialize_databases function with block_offset 
= 8. 

3. Call sh_c_make_dseg function with path = “/”, node = 1, and 
size = 9,000. 

4. Create 9,000 byte buffer in memory and fill with 9,000 a characters; 
assign pointer buf_ptr1 to buffer. 

5. Call sh_c_write_dseg function with handle = 0, buffer = 
buf_ptr1, byte_count = 9000, and offset = 0. 

6. Call sh_c_close_dseg function with handle = 0. 

LPSK test program (argument value: TEST_R1): 
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7. Call sh_i_initialize_databases function with block_offset 
= 8 and num_dsegs = 1. 

8. Call sh_i_get_handle function with path = “/” and node = 1. 

9. Create 9,000 byte buffer in memory; assign pointer buf_ptr1 to buffer. 

10. Call sh_r_read_in function with handle = 0 and buffer = 
buf_ptr1. 

11. Confirm no error returned; confirm contents of buffer matches data written 
to the data segment created in step 4 (test R1A). 

12. Call sh_r_read_in function with handle = 1 and buffer = 
buf_ptr1. 

13. Confirm error SH_C_HANDLE_INVALID returned (test R1B). 

Continue to next test procedure 
 

sh_r_write_out interface test procedure: These tests correspond to Test 
 Group 2 as described in Table 33.  

Begin 

LPSK test program (argument value: TEST_R2): 

1. Generate and store the hash of buffer created and written to in steps 9 and 
10 of the sh_r_read_in test procedure. 

2. Overwrite the contents of the buffer with new data. 

3. Generate and store the hash of the buffer.  

4. Call write out function with handle = 0 and buffer = buf_ptr1. 

5. Confirm no error return returned (test R2A). 

6. Call write out function with handle = 0 and buffer = buf_ptr1. 

7. Confirm error SH_C_HANDLE_INVALID returned (test R2B). 

Continue to next test procedure 
 

sh_r_get_dseg_hash interface test procedure: These tests correspond to 
Test Group 3 as described in Table 34. 

Begin 

LPSK test program (argument value: TEST_R3): 

1. Call sh_r_get_dseg_hash function with handle = 0.  
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2. Confirm no error returned; compare hash value compared to hash 
generated in step 3 of the sh_r_write_out test procedure (test R3A). 

3. Call sh_r_get_dseg_hash function with handle = 1. 

4. Confirm error SH_C_HANDLE_INVALID returned (test R3B). 

End 

sh_r_get_dseg_size interface test procedure: These tests correspond to 
Test Group 4 as described in Table 35. 

Begin 

Configuration test program (argument value: TEST_R4): 

1. Call sh_c_format function. 

2. Call sh_c_initialize_databases function with block_offset 
= 8. 

3. Call sh_c_make_dseg function with path = “/”, node = 1, and 
size = 9,000. 

LPSK test program (argument value: TEST_R4): 

4. Call sh_i_initialize_databases function with block_offset 
= 8 and num_dsegs = 1. 

5. Call sh_i_get_handle function with path = “/” and node = 1. 

6. Call sh_r_get_dseg_size function with handle = 0. 

7. Confirm no error returned; 9,000 size output returned (test R4A). 

8. Call sh_r_get_dseg_size function with handle = 1. 

9. Confirm error SH_C_HANDLE_INVALID returned (test R4A). 

End 

 

sh_r_check_hash interface test procedure: These tests correspond to Test 
 Group 5 as described in Table 36. 

Begin 

Configuration test program (argument value: TEST_R5):  

1. Call sh_c_format function. 

2. Call sh_c_initialize_databases function with block_offset 
= 8. 

3. Call sh_c_make_dseg function with path = “/”, node = 1, and 
size = 9,000. 
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4. Call sh_c_open_dseg function with path = “/” and node = 1; 
handle zero returned. 

5. Create 9,000 byte buffer in memory and fill with 9,000 a characters; 
assign pointer buf_ptr1 to buffer. 

6. Generate and store hash of buffer. 

7. Call sh_c_write_dseg function with handle = 0, buffer = 
buf_ptr1, byte_count = 9000, and offset = 0. 

8. Call sh_c_close_dseg function with handle = 0. 

LPSK test program  (argument value: TEST_R6): 

10. Call sh_i_initialize_databases function with block_offset 
= 8 and num_dsegs = 1. 

11. Call sh_i_get_handle function with path = “/” and node = 1. 

12. Call sh_r_check_hash function with handle = 0. 

13. Confirm no error returned; confirm true value returned (test R5A). 

14. Call sh_r_check_hash_function with handle = 1. 

15. Confirm error SH_C_NODE_NOT_DSEG returned (test R5B). 

End 
 



 142

THIS PAGE INTENTIONALLY LEFT BLANK 



 143

LIST OF REFERENCES 

[1] C. E. Irvine, T. E. Levin, T. D. Nguyen, and G. W. Dinolt, “The Trusted 
Computing Exemplar Project,” in Proceedings of the 5th IEEE Systems, (Military 
Academy, West Point, NY), pp. 109–115, IEEE Computer Society Press, June 
2004. 

[2]  P. Myers, Subversion: the Neglected Aspect of Computer Security, M.S. thesis, 
Naval Postgraduate School, Monterey, CA 1980. 

[3] E. A. Anderson, C. E. Irvine, and R. R. Schell, “Subversion as a Threat in 
Information Warfare,” 2004. 

[4] C. E. Irvine, “Security: Where testing fails,” in International Test and Evaluation 
Association Journal, 21(2), pp. 53–57, 2000. 

[5]  Common Criteria for Information Technology Security Evaluation, Part 3: 
Security assurance requirements, Version 2.1, August 1999. 

[6] M. D. Schroeder, “Engineering a security kernel for MULTICS,” in Fifth 
Symposium on Operating Systems Principles, pp. 125–132, 1975.  

[7]  S. R. Ames, M. Gasser, R. R. Schell, “Security Kernel Design and 
Implementation: An Introduction,” in Computer 16, 7, pp. 14–22, 1983. 

[8] J. Rushby, “The design and verification of secure systems,” in 8th ACM 
Symposium on Operating System Principles 15, 5, pp. 12–21, 1981.  

[9] U.S. Government Protection Profile for Separation Kernels in Environments 
Requiring High Robustness, Version 1.03, Information Assurance Directorate, 
2007. 

[10] C. E. Irvine, T. E. Levin, and T. D. Nguyen, “Least Privilege in Separation 
Kernels,” in Proceedings 12th European Symposium on Programming, (ESOP), 
pp. 159–173, 2006. 

 [11] M. Ward, “Hard drive evolution could hit Microsoft XP users,” BBC News, April 
9, 2010. [Online]. Available: http://news.bbc.co.uk/2/hi/8557144.stm. [Accessed 
March 15, 2010]. 

[12] C. Ruemmler and J. Wilkes, “An Introduction to Disk Drive Modeling,” in IEEE 
Computer, 27(3), pp. 17–29, March 1994. 

[13] D. Golden and M. Pechura, “The structure of microcomputer file systems,” in 
Communications of the ACM, 29(3), pp. 222–230, 1986. 



 144

[14] C. E. Irvine, T. E. Levin, T. D. Nguyen, P. C. Clark, and D. J. Shifflett, “Trusted 
Computing Exemplar Least Privilege Separation Kernel Product Functional 
Specification,” Naval Postgraduate School Center for Information Systems 
Security Studies and Research, 2009. 

[15] Software Development Standards Citation. 

[16] Open Watcom Main Page [Online]. Available: http://openwatcom.org. [Accessed 
June 6, 2010]. 

[17] GCC, the GNU Compiler Collection. [Online]. Available: http://gcc.gnu.org. 
[Accessed June 6, 2010]. 

[18] Open Watcom C/C++ User’s Guide. [Online]. Available: 
http://openwatcom.org/ftp/manuals/current/cguide.pdf. [Accessed May 28, 2010]. 

[19] Security-Enhanced Linux Research Site. [Online]. Available: 
http://nsa.gov/research/selinux/index.shtml. [Accessed June 8, 2010]. National 
Security Agency. 

[20] XTS-400 Trusted Computer System. [Online]. Available: 
http://baesystems.com/ProductsServices/bae_prod_csit_xts400.html. [Accessed 
June 8, 2010]. 

[21] XTS-400/STOP 6.4 U4 Validation Results. [Online]. Available: http://www.niap-
ccevs.org/cc-scheme/st/vid10293. [Accessed June 8, 2010]. National Information 
Assurance Partnership. 

[22] Final Evaluation Report, Gemini Computers, Incorporated, Gemini Trusted 
Network Processor Version 1.01, National Security Agency, June 1995. 

[23] P. J. Denning, S.C. Schwartz, “Properties of the working-set-model.” In 
Communications of the ACM , 14(3), pp. 191–198, 1972. 



 145

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, VA 
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, CA 
 

3. Ernie Brickell 
 Intel 
 Hillsboro, OR 

 
4. Kris Britton 
 National Security Agency 

Fort Meade, MD 
 

1. John Campbell 
National Security Agency 
Fort Meade, MD 
 

2. Deborah Cooper 
DC Associates, LLC 
Roslyn, VA 

 
3. George Cox 
 Intel 
 Hillsboro, OR 

 
4. Grace Crowder 

NSA 
Fort Meade, MD 
 

5. Louise Davidson 
National Geospatial Agency 
Bethesda, MD 

 
6. Vincent J. DiMaria 

National Security Agency 
Fort Meade, MD 
 

7. Rob Dobry 
NSA 
Fort Meade, MD 



 146

8. Jennifer Guild 
SPAWAR 
Charleston, SC 

 
9. CDR Scott Heller 
 SPAWAR 
 Charleston, SC 
 
10. Dr. Steven King 

ODUSD 
Washington, DC 
 

11. Steve LaFountain 
 NSA 
 Fort Meade, MD 
 
12. Dr. Greg Larson 
 IDA 
 Alexandria, VA 
 
13. Dr. Carl Landwehr 

National Science Foundation 
Arlington, VA 

 
14. Dr. John Monastra 

Aerospace Corporation 
Chantilly, VA 

 
15. John Mildner 

SPAWAR 
Charleston, SC 

 
16. Dr. Victor Piotrowski 

National Science Foundation 
Arlington Virginia 
 

17. Jim Roberts 
Central Intelligence Agency 

 Reston, VA 
 

18. John Santos 
 CERDEC S&TCD Information Assurance Division 
 Fort Monmouth, NJ 
 
 



 147

19. Ed Schneider 
 IDA 
 Alexandria, VA 
 
20. Mark Schneider 

NSA 
Fort Meade, MD 

 
21. Keith Schwalm 

Good Harbor Consulting, LLC 
Washington, DC 

 
22. Ken Shotting 

NSA 
Fort Meade, MD 

 
23. Dr. Ralph Wachter 
 ONR 
 Arlington, VA 
 
24. Dr. Cynthia E. Irvine 
 Naval Postgraduate School 
 Monterey, CA 
 
25. Paul C. Clark 
 Naval Postgraduate School 
 Monterey, CA 

 
26. Jonathan M. Guillen 
 Naval Postgraduate School 
 Monterey, CA 


